

Abstract Single-Chip Smart Sensor QMS7926

Advanced Information

QMS7926 is a highly integrated intelligent sensor chip, which are packaged in BGA60,4x4x1.2mm3. Its built-in main functional modules include: high precision and low power consumption triaxial acceleration sensor and signal processing circuit, ARM M0 kernel microprocessor, 2.4G RF transceiver / Bluetooth BLE broadcast module and so on.

- Key Features
- 3-Axis Accelerometer with low noise, high accuracy, low power consumption and offset trimming
- Up to 48Mhz ARM® Cortex™-M0 32-bit processor
- 2.4 GHz Bluetooth Low Energy (BLE) transceiver
- Supply voltage range 1.8V to 3.6V
- 3-Axis Accelerometer
- 14-Bit ADC with low noise accelerometer sensor
- High resolution allows for motion and tilt sensing
- I2C Interface with Standard and Fast modes
- low power consumption (2-50uA low power conversion current)
- Automatically maintains sensor's sensitivity under wide operation voltage range and compatible with battery powered applications
- ◆ ARM® Cortex™-M0 32-bit processor
 - Memory
 - > 512KB in-system flash memory
 - ➤ 128KB ROM
 - 138KB SRAM, all programmable

retention in sleep mode

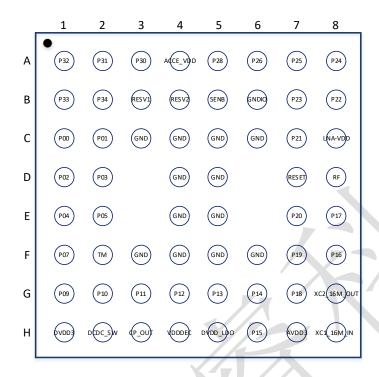
- 31 general purpose I/O pins
 - All pins can be configured as serial interface and programmable IO MUX function mapping
 - > All pins can be configured for wakeup
 - 16 pins for triggering interrupt
 - 3 quadrature decoder (QDEC)
 - > 6-channel PWM
 - 4-channel I2S
 - 2-channel PDM
 - 2-channel I2C
 - 2-channel SPI
 - 1-channel UART
 - JTAG
- 6-channel 12bit ADC with analog PGA
- 4-channel 32bit timer, one watchdog timer
- Real timer counter (RTC)
- Power, clock, reset controller
- Flexible power management
 - Supply voltage range 1.8V to 3.6V
 - Embedded buck DC-DC
 - Embedded LDOs
 - Battery monitor: Supports low battery detection
 - 2μA @ Sleep Mode with 32KHz RTC
 - > 0.7μA @ OFF Mode (IO wake up only)

Document #: 13-52-18 **Title:** QMS7926 Datasheet

Rev: A

- ◆ 2.4 GHz Bluetooth Low Energy (BLE) transceiver
 - 2.4 GHz transceiver
 - Compliant to Bluetooth 5.0, ETSI EN 300 328 and EN 300 440 Class 2 (Europe), FCC CFR47 Part 15 (US) and ARIB STD-T66 (Japan)
 - > Sensitivity:
 - -97dBm@BLE 1Mbps data rate
 - -103dBm@BLE 125Kbps data rate
 - TX Power -20 to +10dBm in 3dB steps
 - ➤ Receiver: 8mA @sensitivity level
 - Transmitter: 8mA @0dBm TX power
 - Single-pin antenna: no RX/TX switching required
 - RSSI (1dB resolution)
 - RC oscillator hardware calibrations
 - 32KHz RC oscillator automatic calibration

- 32MHz RC oscillator automatic calibration
- AES-128 encryption hardware
 - AES-ECB
 - > AES-CCM
- Link layer hardware
 - Automatic packet assembly
 - Automatic packet detection and validation
 - Auto Re-transmit
 - Auto ACK
 - Hardware Address Matching
 - Random number generator
- Operating condition
 - Supply voltage range: 1.8V to 3.6V
 - Operating temperature: -40°C to 85°C
- ◆ RoHS Package: BGA-60



18

Title: QMS7926 Datasheet

Rev: A

Pin Assignment

Pin Configurations

Pin Number	Pin Name	Description				
۸1	D22	all functions configurable				
A1	P32	*Note: Not support interrupt and ADC function				
A2	P31	all functions configurable				
AZ	h21	*Note: Not support interrupt and ADC function				
A3	P30	all functions configurable				
AS	P30	*Note: Not support interrupt and ADC function				
A4	ACCE_VDD	power supply of Accelerometer				
۸Ε	D29/CDA	it is connected between P28 of MCU and SDA of Accelerometer internally				
A5 P28/SDA		*Note: Not available for other signals.				
A6	P26/SCL	it is connected between P26 of MCU and SCL of Accelerometer internally				
At		*Note: Not available for other signals.				
A7 P25		all functions configurable/test_mode_select [1]				
A/	F23	*Note: Not support interrupt function and ADC function				
A8	P24	all functions configurable/test_mode_select [0]				
Ao	F24	*Note: Not support interrupt function and ADC function				
B1	P33	all functions configurable				
DI	P33	*Note: Not support interrupt and ADC function				
В2	P34	all functions configurable				
DZ	F 34	*Note: Not support interrupt and ADC function				
В3	RESVE1	reserved for Accelerometer				
в3	KESVET	*Note: Float or connect to GND				

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.

Title: QMS7926 Datasheet

Rev: A

		T		
B4	RESVE2	Reserved for Accelerometer		
		*Note: Float or connect to GND		
B5	SENB	protocol selection of Accelerometer		
	32142	*Note: Connect to VDD		
B6	GNDIO	test pin of Accelerometer		
	GIVDIO	*Note: Connect to GND		
В7	P23	all functions configurable		
	7 2 3	*Note: Not support interrupt function and ADC function		
B8	P22	all functions configurable		
Во	r Z Z	*Note: Not support interrupt function and ADC function		
C1	P00	all functions configurable/JTAG_TDO		
CI	P00	*Note: Not support ADC function		
C2	P01	all functions configurable/JTAG_TDI		
C2	P01	*Note: Not support ADC function		
C3	GND	Ground		
C4	GND	Ground		
C5	GND	Ground		
C6	GND	Ground		
67	B24	all functions configurable		
C7	P21	*Note: Not support interrupt function and ADC function		
C8	LNA/TRX_VDD	LNA and TRX VDD		
D4	P02	all functions configurable/JTAG_TMS		
D1		*Note: Not support ADC function		
D2	P03	all functions configurable/JTAG_TCK		
D2		*Note: Not support ADC function		
D4	GND	Ground		
D5	GND	Ground		
D7	RST_N	reset pin		
D8	RF	RF antenna		
		all functions configurable		
E1	P04	*Note: Not support ADC function		
	202 (200 = 1	it is connected between P05 of MCU and INT1 of Accelerometer internally		
E2	P05/AINT1	*Note: Not available for other signals and keep NC		
E4	GND	Ground		
E5	GND	Ground		
	λ	all functions configurable/AIO<9>/Micphone bias output		
E7	P20	*Note: Not support interrupt function		
E8	P17/32K_OUT	all functions configurable/AIO<6>/32k crystal output		
		all functions configurable		
F1	P07	*Note: Not support ADC function		
F2	TM	test mode pin		
L		'		

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.

Title: QMS7926 Datasheet

Rev: A

F3	GND	Ground
F4	GND	Ground
F5	GND	Ground
F6	GND	Ground
F.7	D10	all functions configurable/AIO<8>/PGA differential negative input
F7	P19	*Note: Not support interrupt function
F8	P16/32K_IN	all functions configurable/AIO<5>/32K crystal input
C1	D00	all functions configurable
G1	P09	*Note: Not support ADC function
63	D10	all functions configurable
G2	P10	*Note: Not support ADC function
G3	P11	all functions configurable/AIO<0>
G4	P12	all functions configurable/AIO<1>
G5	P13	all functions configurable/AIO<2>
G6	P14	all functions configurable/AIO<3>
G 7	P18	all functions configurable/AIO<7>/PGA differential positive input
G/		*Note: Not support interrupt function
G8	XC2_16M_OUT	16M crystal output
H1	DVDD3	3V power supply for digital IO, DCDC, Charge pump
H2	DCDC_SW	buck dcdc output
H3	CP_OUT	charge pump output
H4	VDDDEC	1.2V VDD_CORE, digital LDO output
H5	DVDD_LDO	digital LDO input
H6	P15	all functions configurable/AIO<4>
H7	AVDD3	3V power supply for analog IO, bg, rcosc, etc
Н8	XC1_16M_IN	16M crystal input

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.

CONTENTS

3-Axis	Accelerometer	
1	INTERNAL SCHEMATIC DIAGRAM	8
	1.1 Internal Schematic Diagram	8
2	SPECIFICATIONS AND I/O CHARACTERISTICS	9
	2.1 Product Specifications	9
	2.2 Absolute Maximum Ratings	
	2.3 I/O Characteristics	
3	BASIC DEVICE OPERATION	
	3.1 Acceleration sensor	
	3.2 Power Management	11
	3.3 Power On/Off Time	
	3.4 Communication Bus Interface I ² C and Its Addresses	
4	MODES OF OPERATION	19
•	4.1 Modes Transition	
	4.2 Description of Modes	
5	Functions and interrupts	
3	5.1 STEP_INT	
	5.2 DRDY_INT	
	5.3 ANY MOT INT.	14
	5.3 ANY_MOT_INT	۱۳
	5.5 NO MOT INT	1 / 1°
	5.5 NU_MU1_IN1	1 / 12
	5.6 RAISE_INT	l /
_	5.7 Interrupt configuration	18
6	I2C COMMUNICATION PROTOCOL	19
	6.1 I ² C Timings	
-	6.2 I ² C R/W Operation	
7	REGISTERS	
	7.1 Register Map	21
	7.2 Register Definition	
	ntroduction	
1	Product Overview	
	1.1 Block Diagram	
2	System Blocks	
	2.1 CPU	
	2.2 Memory	
	2.3 Boot and Execution Modes	
	2.4 Power, Clock and Reset (PCR)	
	2.5 Power Management (POWER)	
	2.6 Low Power Features	
	2.7 Interrupts	
	2.8 Clock Management (CLOCK)	45
	2.9 IOMUX	46
	2.10 GPIO	59
3	Peripheral Blocks	65
	3.1 2.4GHz Radio	65
	3.2 Timer/Counters (TIMER)	
	3.3 Real Time Counter (RTC)	
	3.4 AES-ECB Encryption (ECB)	
	3.5 Random Number Generator (RNG)	
	3.6 Watchdog Timer (WDT)	
	3.7 SPI (SPI)	

Title: QMS7926 Datasheet

Rev: A

	3.8	I2C (I2c0, I2c1 Two Independent Instances)	80
	3.9	I2S	
	3.10	UART (UART)	
	3.11	Pulse Width Modulation (PWM)	
	3.12	Quadrature Decoder (QDEC)	
	3.13	Key Scan (KSCAN)	
	3.14	Analog to Digital Converter (ADC) with Programmable Gain Amplifier (PGA)	13
4	Absolute	e Maximum Ratings	13
5	Operatir	g Conditions	138
6	Radio T	ransceiver	139
	6.1	Radio Current Consumption	139
	6.2	Transmitter Specification	139
	6.3	Receiver Specification	139
	6.4	RSSI Specifications	
7	Glossary	1	143
Package	dimension	ns.	144
Orderin	g informat	ion	145
Sample	Application	on and Lavout Guide	146
-	1.1	Sample Application	146
	1.2	Layout Guide	140

Title: QMS7926 Datasheet

Rev: A

3-Axis Accelerometer

1 INTERNAL SCHEMATIC DIAGRAM

1.1 Internal Schematic Diagram

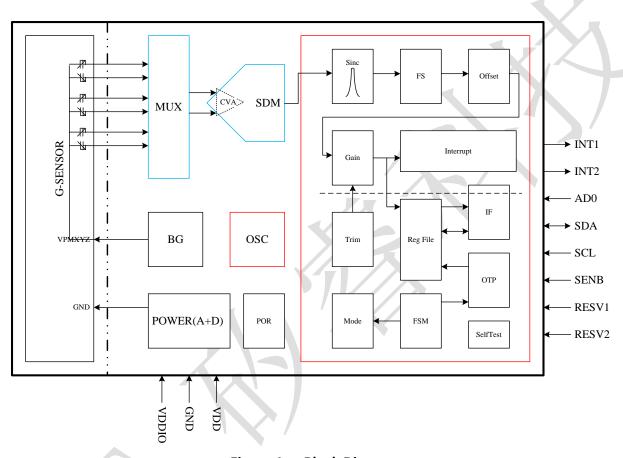


Figure 1. Block Diagram

Table 1. Block Function

Block	Function	
Transducer	3-axis acceleration sensor	
CVA Charge-to-Voltage amplifier for sensor signals		
Interrupt	Digital interrupt engine, to generate interrupt signal on data	
	conversion, and motion function	
FSM	Finite state machine, to control device in different mode	
I ² C/SPI	Interface logic data I/O	
OSC	Internal oscillator for internal operation	
Power	Power block, including LDO	

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.

 $8\ /\ 148$

Title: QMS7926 Datasheet

Rev: A

2 SPECIFICATIONS AND I/O CHARACTERISTICS

2.1 Product Specifications

Table 2. Specifications (* Tested and specified at 25°C and 3.0V VDD except stated otherwise.)

Parameter	Conditions	Min	Тур	Max	Unit
Supply voltage VDD	VDD, for internal blocks	1.71	3.3	3.6	V
I/O voltage VDDIO	VDDIO, for IO only	1.71	3.3	VDD	V
Standby current	VDD and VDDIO on		1		μΑ
	ODR=268 Hz		50		
	ODR=134 Hz		25.3		21'
Lave marriage arrangement	ODR=67 Hz		12.9		μΑ
Low power current	ODR=33.6 Hz		6.7		1
	ODR=13.4 Hz		2.9		
	ODR=6.7 Hz		1.7		
	ODR=32.5 Hz		100		
Lavoration account	ODR=21.6 Hz	一人	83.3		μΑ
Low noise current	ODR=13 Hz		50		
	ODR=6.5 Hz		25		
BW	Programmable bandwidth		0.16~168		Hz
Data output rate (ODR)	2*BW		0.32~336		Samples /sec
Startup time	From the time when VDD reaches to 90% of final value to the time when device is ready for conversion		2		ms
Wakeup time	From the time device enters into active mode to the time device is ready for conversion		1		ms
Operating temperature	Y	-40		85	°C
Acceleration Full			±2/±4/±8/		~
Range			±16/±32		g
	FS=±2g		4096		
	FS=±4g		2048		ICD/~
Sensitivity	FS=±8g		1024		LSB/g
	FS=±16g		512		
	FS=±32g		256		
Sensitivity Temperature Drift	FS=±2g, Normal VDD Supplies		±0.02		%/°C

The in	nformation contained herein is the exclusive property of QST, and shall not be distributed,
reprod	duced, or disclosed in whole or in part without prior written permission of QST.

Title: QMS7926 Datasheet

Rev: A

Parameter	Conditions	Min	Тур	Max	Unit
Sensitivity tolerance	Gain accuracy		±4		%
Zero-g offset	FS=±2g, Normal VDD Supplies		±80		mg
Zero-g offset	FC_+2g Normal VDD Supplies		13		1°C
Temperature Drift	FS=±2g, Normal VDD Supplies		±2		mg/°C
Noise density	FS=±2g, run state		200		μg/√Hz
Nonlinearity	FS=±2g, Best fit straight line,		±0.5		%FS
Cross Axis Sensitivity			1		%

2.2 Absolute Maximum Ratings

Table 3. Absolute Maximum Ratings (Tested at 25°C except stated otherwise.)

Parameters	Condition	Min	Max	Units
VDD		-0.3	5.4	V
VDDIO		-0.3	5.4	V
ESD	НВМ		2	kV
Shock Immunity	Duration < 200μS		10000	g
Storage temperature		-50	150	$^{\circ}$

2.3 I/O Characteristics

Table 4. I/O Characteristics

Parameter	Symbol	Pin	Condition	Min.	TYP.	Max.	Unit
Voltage Input	\/1	SDA SCI		0.7*V		VDDIO	٧
High Level 1	V _{IH} 1	SDA, SCL		DDIO		+0.3	٧
Voltage Input	V _{IL} 1	SDA, SCL	~ /	-0.3		0.3*V	V
Low Level 1	AILT	SDA, SCL		-0.5		DDIO	V
Voltage		INT1,	Output Current	0.8*V			
Output High	Vон	INT2	≥-100µA	DDIO			V
Level		IIVIZ	2-100μΑ	סוסס			
Voltage		INT1,	Output Current				
Output Low	VoL	INT2,	≤100μA(INT)			0.2*V	V
	VOL	SDA	Output Current			DDIO	V
Level		SUA	≤1mA (SDA)				

3 BASIC DEVICE OPERATION

3.1 Acceleration sensor

The acceleration sensor circuit consists of tri-axial sensors and application specific support circuits to measure the acceleration of device. When a DC power supply is applied to the sensor,

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.	10 / 148
--	----------

Title: QMS7926 Datasheet

Rev: A

the sensor converts any accelerating incident in the sensitive axis directions to charge output.

3.2 Power Management

Device has two power supply pins. VDD is the main power supply for all of the internal blocks, including analog and digital. VDDIO is a separate power supply, for digital interface only.

The device contains a power-on-reset generator. It generates reset pulse as power on, which can load the register's default value, for the device to function properly.

To make sure the POR block functions well, we should have such constrains on the timing of VDD and VDDIO.

The device should turn-on both power pins in order to operate properly. When the device is powered on, all registers are reset by POR, then the device transits to the standby mode and waits for further commends.

Table 6 provides references for four power states.

Table 6. Power States

Power State	VDD	VDDIO	Power State description						
1	0V	0V	Device Off, No Power Consumption						
			Not allowed. User need to make sure that VDDIO						
2	0V	1.71V~3.6V	is less than VDD. Otherwise, there will be leakage						
		\sim	from VDDIO to VDD through internal ESD devices						
3	1.71V~3.6V	0V	Device Off, Same Current as Standby Mode						
4	1 711/~2 61/	1 711/~\/DD	Device On, Normal Operation Mode, Enters						
4	1.71V~3.6V	1.71V~VDD	Standby Mode after POR						

3.3 Power On/Off Time

Device has two power supply pins and two ground pins. VDD is the main power supply for all of the internal blocks, including analog and digital. VDDIO is a separate power supply, for digital interface only. GND is 0V supply for all of internal blocks, and GNDIO for digital interface.

There is no limitation on the voltage levels of VDD and VDDIO relative to each other, as long as they are within operating range.

The device contains a power-on-reset generator. It generates reset pulse as power on, which can load the register's default value, for the device to function properly.

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.	11 / 148
--	----------

Title: QMS7926 Datasheet

Rev: A

To make sure the POR block functions well, we should have such constrains on the timing of VDD.

The power on/off time related to the device is in Table 7

Table 7. Time Required for Power On/Off

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
POR Completion Time	PORT	Time Period After VDD and VDDIO at Operating Voltage to Ready for I ² C Commend and Analogy Measurement.			250	μς
Power off Voltage	SDV	Voltage that Device Considers to be Power Down.	1		0.2	V
Power on Interval	PINT	Time Period Required for Voltage Lower Than SDV to Enable Next POR	100			μs
Power on Time	PSUP	Time Period Required for Voltage from SDV to 90% of final value			50	ms

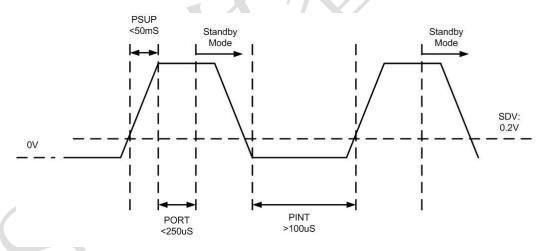


Figure 9. Power On/Off Timing

3.4 Communication Bus Interface I²C and Its Addresses

This device will be connected to a serial interface bus as a slave device under the control of a master device, such as the processor. Control of this device is carried out via I²C.

This device is compliant with I^2C -Bus Specification, document number: 9398 393 40011. As an I^2C compatible device, this device has a 7-bit serial address and supports I^2C protocols. This device

The information contained herein is the exclusive property of QST, and shall not be distributed,	12 / 148
reproduced, or disclosed in whole or in part without prior written permission of QST.	12 / 148

Title: QMS7926 Datasheet

Rev: A

supports standard and fast speed modes, 100 kHz and 400 kHz, respectively. External pull-up resistors are required to support all these modes.

There are two I²C addresses selected by connecting pin 1 (AD0) to GND or VDDIO. The first six MSB are hardware configured to "001001" and the LSB can be configured by AD0.

Table 8. I²C Address Options

AD0 (pin 1)	I ² C Slave Address(HEX)	I ² C Slave Address(BIN)
Connect to GND	12	0010010

4 MODES OF OPERATION

4.1 Modes Transition

QMA7981 has two different operational modes, controlled by register (0x11), MODE_BIT. The main purpose of these modes is for power management. The modes can be transited from one to another, as shown below, through I²C commands. The default mode after power-on is standby mode.

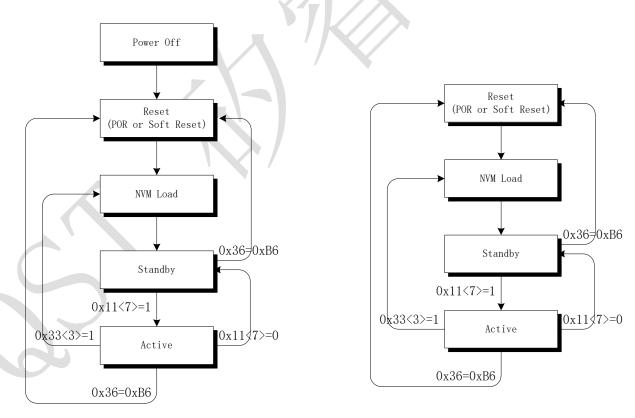


Figure 10. Basic operation flow after power-on

Figure 11. The work mode transferring

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.

Title: QMS7926 Datasheet

Rev: A

The default mode after power on is standby mode. Through I²C instruction, device can switch between standby mode and active mode. With SOFTRESET by writing 0xB6 into register 0x36, all of the registers will get default values. SOFTRESET can be done both in active mode and in standby mode. Also, by writing 1 in NVM_LOAD (0x33<3>) when device is in active mode, the NVM related image registers will get default value from NVM, however, other registers will keep the values of their own.

4.2 Description of Modes

4.2.1 Active Mode

In active mode, the ADC digitizes the charge signals from transducer, and digital signal processor conditions these signals in digital domain, processes the interrupts, and send data to Data registers (0x01~0x06).

4.2.2 Standby Mode

In standby mode, most of the blocks are off, while device is ready for access through I²C. Standby mode is the default mode after power on or soft reset. Device can enter into this mode by set the soft reset register (0x36) to 0xB6 or set the MODE_BIT (0x11<7>) to logic 0.

Besides the above two modes, the device also contains NVM loading state. This state is used to reset the value of the NVM related image registers. There are two bits related to this state. When NVM_LOAD (0x33<3>) is set to 1, NVM loading starts. When the device is in NVM loading state, NVM_RDY (0x33<2>) is set to logic 0 by device. After NVM loading is finished, NVM_RDY (0x33<2>) is set back to logic 1 by device, and NVM_LOAD is reset to 0 by device automatically. NVM loading can only happen when NVM_LOAD is set to 1 in active mode. If the user sets this NVM_LOAD bit to 1 in standby mode, the device will not take the action until it enters into active state by setting MODE_BIT (0x11<7>) to logic 1.

After loading NVM, the device will enter into standby mode directly.

The loading time for NVM is about 100uS.

5 Functions and interrupts

ASIC support interrupts, such as STEP_INT, DRDY_INT, ANY_MOT_INT, SIG_MOT_INT, NO_MOT_INT, RAISE_INT, etc.

5.1 STEP_INT

The STEP/STEP_QUIT detect that the user is entering/exiting step mode. When the user enter into step mode, at least one axis sensor data will vary periodically, by numbering the variation periods the step counter can be calculated.

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.

Title: QMS7926 Datasheet

Rev: A

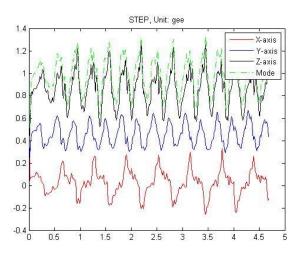


Figure 12. STEP/STEP QUIT

Median data (max+min) /2 is called dynamic threshold, the max and min data can be updated by certainly samples, the sample number can be set by register STEP_SAMPLE_CNT(0x12<6:0>). When the sensor data decreasing (or increasing) through the dynamic threshold, a user run step is detected.

Register STEP_PRECISION (0x13<6:0>) is used as threshold when updating the new collected sensor data. Sensor data below the threshold will be discarded, this helps removing unstable variations causing failed detection.

The run step event happened at certain interval timing. All of the events outside the timing window will not be regarded as a run step and the step counter will not counted. The timing window can be set by register STEP_TIME_UP(0x15) and STEP_TIME_LOW(0x14), the conversion ODR numbers ranged from STEP_TIME_LOW *ODR to 8* STEP_TIME_UP*ODR .

STEP_COUNT_PEAK<2:0> is used to set a fixed peak value for step detection, 0.05G~0.4G can be set. STEP_COUNT_P2P<2:0> is used to set a peak to peak threshold for step detection, 0.3G~1G can be set.

To remove unstable variation which will cause false STEP event detection, the step counter considers steps as valid step events only after some continuous steps detected; the start threshold can be set by 0x1F<7:5>. Also, the step counter register STEP_CNT<23:0> ({0x0E,0x08,0x07}) will be updated immediately by the setting number, and interrupt STEP is also generated.

The related interrupt status bit is STEP_INT (0x0A<3>) and SIG_STEP (0x0A<6>). When the interrupt is generated, the value of STEP_INT will be set to logic 1, which will be cleared after the interrupt status register is read by user. STEP_IEN/SIG_STEP_IEN (0x16<3>/0x16<6>) is the enable bit for the STEP_INT/SIG_STEP_INT. Also, to get this interrupt on PIN_INT1 and/or PIN_INT2, we need to set INT1_STEP (0x19<3>)/INT1_SIG_STEP (0x19<6>) or INT2_STEP (0x1B<3>) /INT2_SIG_STEP (0x1B<6>) to logic 1, to map the interrupt to the interrupt PINs.

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.

Title: QMS7926 Datasheet

Rev: A

5.2 DRDY_INT

The width of the acceleration data is 14 bits, in two's complement representation. The data of each axis is split into 2 parts, the MSB part (one byte contains bit 13 to bit 6) and the LSB part (one byte contains bit 5 to bit 0). Reading data should start with LSB part. When user is reading the LSB byte of data, to ensure the integrity of the acceleration data, the content of MSB can be locked, by setting SHADOW_DIS (0x21<6>) to logic 0. This lock function can be disabled by setting SHADOW_DIS to logic 1. Without lock, the MSB and LSB content will be updated by new value immediately. The bit NEW_DATA in the LSB byte is the flag of the new data. If new data is updated, this NEW_DATA flag will be 1, and will be cleared when corresponding MSB or LSB is read by user.

Also, the user should note that even with SHADOW_DIS=0, the data of 3 axes are not guaranteed from the same time point.

The device supports four different acceleration measurement ranges. The range is setting through RANGE (0x0F<3:0>), and the details as following:

RANGE	Acceleration range	Resolution
0001	2g	244ug/LSB
0010	4g	488ug/LSB
0100	8g	977ug/LSB
1000	16g	1.95mg/LSB
1111	32g	3.91mg/LSB
Others	2g	244ug/LSB

The interrupt for the new data serves for the synchronous data reading for the host. It is generated after storing a new value of z-axis acceleration data into data register. This interrupt will be cleared automatically when the next data conversion cycle starts, and the interrupt will be effective about 64*MCLK, and automatically cleared.

The interrupt mode for the new data is fixed to be non-latched.

5.3 ANY MOT INT

Any motion Any motion detection uses slope between two successive data to detect the changes in motion. It generates interrupt when a preset threshold ANY_MOT_TH (0x2E) is exceeded.

The time difference between two successive data depends on the output data rate (ODR).

$$Slope(t1) = (acc(t1) - acc(t0)) * ODR$$

The any motion detection criteria are fulfilled and interrupt is generated if any of enabled channels exceeds ANY_MOT_TH for ANY_MOT_DUR (0x2C<1:0>) consecutive times.

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.

Title: QMS7926 Datasheet

Rev: A

As long as all the enabled channels data fall or stay below ANY_MOT_TH for ANY_MOT_DUR consecutive times, the interrupt will be reset unless the interrupt signal is latched.

The any motion detection engine will send out the signals of axis which triggered the interrupt (ANY_MOT_FIRST_X (0x09<0>), ANY_MOT_FIRST_Y (0x09<1>), ANY_MOT_FIRST_Z (0x09<2>)) and the sign of the motion (ANY_MOT_SIGN (0x09<3>))

5.4 SIG_MOT_INT

A significant motion is a motion due to a change in user location.

The algorithm is as following:

- 1) Look for movement, same setting as any motion detection
- 2) If movement detected, sleep for T_Skip (0x2F<3:2>)
- 3) Look for movement
 - a) If no movement detected within T Proof (0x2F<5:4>), go back to 1
 - b) If movement detected, report a significant movement, and generate the interrupt

The significant motion detection and any motion detection are exclusive, user can select either one through SIG MOT SEL (0x2F<0>).

If significant motion is detected, the engine will set SIG MOT INT (0x0A<0>).

5.5 NO_MOT_INT

No-motion interrupt is generated if the slope (absolute value of acceleration difference) on all selected axes is smaller than the programmable threshold for a programmable time. Figure shows the timing for the no-motion interrupt. Register (0x2C) NO_MOT_DUR defines the delay times before the no-motion interrupt is generated. Table lists the delay times adjustable with register (0x2C) NO_MOT_DUR.

The no-motion interrupt is enabled per axis by writing logic 1 to bits (0x18) NO_MOTION_EN_X, (0x18) NO_MOTION_EN_Y, and (0x18) NO_MOTION_EN_Z, respectively. The no-motion threshold is set through the (0x2D) NO_MOT_TH register. The meaning of an LSB of (0x2D) NO_MOT_TH depends on the selected g-range: it corresponds to 3.91mg in 2g-range (7.81mg in 4g-range, 15.6mg in 8g-range, 31.25mg in 16g-range, 62.5mg in 32g-range). Therefore the maximum value is 996mg in 2g-range (2g in 4g-range, 4g in 8g-range, 8g in 16g-range, and 16g in 32g-range). The time difference between the successive acceleration samples depends on the selected ODR and equates to 1/ODR.

5.6 RAISE_INT

Raise wake algorithm is used to detect the action of raise hand (or hand down). The interrupt is enabled by writing logic 1 to bits (0X16[1]) RAISE_EN, (0X16[2]) HD_EN. User can adjust the sensitivity through the registers. The register RAISE_WAKE_SUM_TH(0X2A[5:0]) defines the

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.

Title: QMS7926 Datasheet

Rev: A

strength of hand action (raise and down). The register RAISE_DIFF_TH(0X2A[7:6],0X2B[1:0]) defines the differential values of twice actions, when the hand behavior almost done the differential value will be smaller and we can use this register to set the threshold. RAISE_WAKE_PERIOD and RAISE_WAKE_TIMEOUT_TH define the duration of the total hand action.

5.7 Interrupt configuration

The device has the above 3 interrupt engines. Each of the interrupts can be enabled and configured independently. If the trigger condition of the enabled interrupt fulfilled, the corresponding interrupt status bit will be set to logic 1, and the mapped interrupt pin will be activated. The device has two interrupt PINs, INT1 and INT2. Each of the interrupts can be mapped to either PIN or both PINs.

The interrupt status registers $INT_ST(0x09^{\circ}0x0d)$ will update when a new data word is written into the data registers. If an interrupt is disabled, the related active interrupt status bit is disabled immediately.

When interrupt condition is fulfilled, related bit of interrupt will be set, until the associated interrupt condition is no more valid. Read operation to related register will also clear the register.

Device supports 2 interrupt modes, non-latched, and latched mode. The interrupt modes are set through LATCH_INT (0x21<0>).

In non-latched mode, the mapped interrupt pin will be set and/or cleared same as associated interrupt register bit. Also, the mapped interrupt pin can be cleared with read operation to any of the INT ST(0x09~0x0d).

Exception to this is the new data interrupt and step interrupt, which are automatically reset after a fixed time ($T_pulse = 64/MCLK$), no matter LATCH_INT (0x21<0>) is set to 0 or 1.

In latched mode, the clearings of mapped pins are determined by INT_RD_CLR (0x21<7>). If the condition for trigging the interrupt still holds, the interrupt status will be set again with the next change of the data registers.

Mapping the interrupt pins can be set by INT MAP (0x19~0x1B).

The electrical interrupt pins can be set INT_PIN_CONF (0x20<3:0>). The active logic level can be set to 1 or 0, and the interrupt pin can be set to open-drain or push-pull.

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.

₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩	Document #:	13-52-18	Title:	QMS7926 Datasheet	Rev: A

6 I2C COMMUNICATION PROTOCOL

6.1 I²C Timings

Table 9 and Figure 11 describe the I^2C communication protocol times

Table 9. I²C Timings

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
SCL Clock	f_{scl}		0	V	400	kHz
SCL Low Period	t_{low}		1			μs
SCL High Period	t_{high}		1			μs
SDA Setup Time	t _{sudat}		0.1	V		μs
SDA Hold Time	t _{hddat}		0		0.9	μs
Start Hold Time	t _{hdsta}		0.6			μs
Start Setup Time	t _{susta}		0.6			μs
Stop Setup Time	t_{susto}		0.6			μs
New Transmission Time	t _{buf}		1.3			μs
Rise Time	t_{r}	X -/-				μs
Fall Time	t_{f}					μs

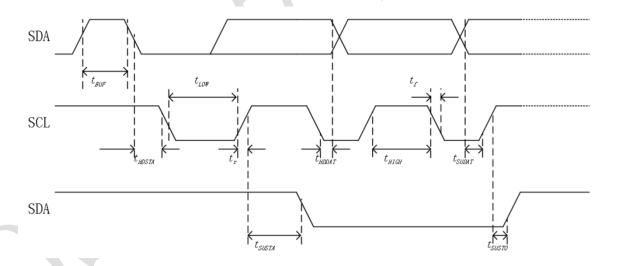


Figure 13. I²C Timing Diagram

6.2 I²C R/W Operation

6.2.1 Abbreviation

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.	19 / 148
--	----------

Title: QMS7926 Datasheet

Rev: A

Table 10. Abbreviation

SACK	Acknowledged by slave
MACK	Acknowledged by master
NACK	Not acknowledged by master
RW	Read/Write

6.2.2 Start/Stop/Ack

START: Data transmission begins with a high to transition on SDA while SCL is held high. Once I²C transmission starts, the bus is considered busy.

STOP:STOP condition is a low to high transition on SDA line while SCL is held high.

ACK: Each byte of data transferred must be acknowledged. The transmitter must release the SDA line during the acknowledge pulse while the receiver mush then pull the SDA line low so that it remains stable low during the high period of the acknowledge clock cycle.

NACK: If the receiver doesn't pull down the SDA line during the high period of the acknowledge clock cycle, it's recognized as NACK by the transmitter.

6.2.3 I²C Write

I²C write sequence begins with start condition generated by master followed by 7 bits slave address and a write bit (R/W=0). The slave sends an acknowledge bit (ACK=0) and releases the bus. The master sends the one byte register address. The slave again acknowledges the transmission and waits for 8 bits data which shall be written to the specified register address. After the slave acknowledges the data byte, the master generates a stop signal and terminates the writing protocol.

Table 11. I²C Write

	۱ W ۱ و٠										Register Address										Da	ta					
STAI	-1.						W	\triangleright	(0x11)						SAC	(0x80)						SAC	STO				
RT	0 0	1	0	0	1	0	0	웃	0	0	0	1	0	0	0	1	×	1	0	0	0	0	0	0	0	X	P

6.2.4 I²C Read

 I^2C write sequence consists of a one-byte I^2C write phase followed by the I^2C read phase. A start condition must be generated between two phase. The I^2C write phase addresses the slave and sends the register address to be read. After slave acknowledges the transmission, the master generates again a start condition and sends the slave address together with a read bit (R/W=1). Then master releases the bus and waits for the data bytes to be read out from slave. After each data byte the master has to generate an acknowledge bit (ACK = 0) to enable further data transfer.

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.

Title: QMS7926 Datasheet

Rev: A

A NACK from the master stops the data being transferred from the slave. The slave releases the bus so that the master can generate a STOP condition and terminate the transmission.

The register address is automatically incremented and more than one byte can be sequentially read out. Once a new data read transmission starts, the start address will be set to the register address specified in the current I²C write command.

Table 12. I²C Read

Slave Address							R W	٧S	Register Address																			
START	0	0	1	0	0	1	0	0	SACK	0	0	0	0	0	0	0	0	CK	7					Z	7) /
START		Sla	ive	Ac	ddr	ess		R W	SA		Data (0x00)								Data (0x01)									
\RT	0	0	1	0	0	1	0	1	SACK	0	0	0	0	0	0	1	0	MACK	0	0	0	0	0	0	0	0		
MACK	Data													MACK				Da (0x					NACK	STOP				
CK	0	0	0	0	0	0	1	0	CK										0	0	0	0	0	0	0	0	CK	ЭP

7 REGISTERS

7.1 Register Map

The table below provides a list of the 8-bit registers embedded in the device and their respective function and addresses

Table 13. Register Map

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.

Title: QMS7926 Datasheet

Rev: A

Add.	Name	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	R/W	DEF
0x3F	Name	DILL		: WAKE PERIOD[D1 (2	RAISE WAKE TII		DICO	RW	02
	RAISE CFG		KAIDE	_WAKE_FEKTODE	RAISE WAKE TI	שבחוד דנו[ק.ה]	KAISE_WARE_III	MECOLITIES	-	RW	00
	S_RESET				SOFTRESE					RW	00
0x35	o_RESEI				RAISE_WAKE_					RW	81
0x34			YZ_TH_SEL[2:0]		KHIDE_#HKE_	ERIOD[1.0]	Y_TH[4:0]			RW	9D
	ST	SELFTEST BIT	12_111_566[2.0]				SELFTEST_SIGN	BP_AXIS :	STRP(1:0)	RW	00
0x31	51	DEEL TEST_BIT					DEEPTEDT_DIGIT	DI_HXIU_	51E1 (1.0)	RW	00
	RST MOT	MO BP CO	STEP BP CO		LOW RST N	HIGH RST N	NO MOT RST N	SIG MOT RST N	ANY MOT RST N		1F
0x2F		DI00	0101_01_00	SIG MOT T	PROOF<1:0>		SKIP<1:0>	DEC_MOT_NOT_N	SIG MOT SEL	RW	00
0x2E					ANY MOT					R₩	00
0x2D					NO_MOT_	TH<7:0>				R₩	00
0x2C	MOT_CFG			NO_MOT_I	DUR<5:0>		`	ANY_MOT_	DUR<1:0>	R₩	00
0x2B			HD_Z_TH[2:0]			HD_X_TH[2:0]	`	RAISE_WAKE_I	DIFF_TH[3:2]	R₩	7C
0x2A	RAISE_CFG	RAISE_WAKE_I	DIFF_TH[1:0]			RAISE_WAKE_	SUM_TH[5:0]			R₩	D8
0x29					OS_CUST	_				R₩	00
0x28					OS_CUST					R₩	00
	OS_CUST				OS_CUST	_	<u> </u>	<u> </u>		R₩	00
	INT_CFG	INT_RD_CLR	SHADOW_DIS	DIS_I2C	1	1	1	LATCH_INT_STEP	LATCH_INT	R₩	1C
	INT_PIN_CFG	DIS_PU_SENB	DIS_IE_ADO	EN_SPI3W	STEP_COUNT_PEAK<2>	INT2_OD	INT2_LVL	INT1_OD	INT1_LVL	R₩	05
0x1F		STI	EP_START_CNT<2		STEP_COUNT	_PEAK<1:0>		P_COUNT_P2P<2	:0>	R₩	A9
0x1E	aren ara		Z_TH		DD THERRIAL /C	^\	X_TH	[3:0]	PM PROPE DO	R₩	66
0x1D	STEP_CFG	THTO NO HOT	1		EP_INTERVAL<6:		THEO HEAR	1	EN_RESET_DC	RW	00 62
0x1C		INT2_NO_MOT	1 INT2 SIG STEP	1 1	INT2_DATA 1	INT2_LOW INT2 STEP	INT2_HIGH	INT2 RAISE	INT2_ANY_MOT INT2 SIG MOT	RW RW	B0
0x1B 0x1A		INT1 NO MOT	1	1	INT1 DATA	INT1 LOW	INT2_HD INT1 HIGH	1 1N12_KAISE	INT1 ANY MOT		62
	INT_MAP	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	INT1_SIG_STEP	1	1	INT1_EOW INT1_STEP	INT1_HD	INT1_RAISE	INT1_ANT_MOT		B0
0x18	1111_MAI	NO MOT EN Z	NO MOT EN Y	NO MOT EN X	1	1	ANY MOT EN Z		ANY MOT EN X	RW	18
0x17		1	1	1	INT_DATA_EN	LOW_EN	HIGH_EN_Z	HIGH_EN_Y	HIGH_EN_X	RW	EO
	INT_EN	1	SIG_STEP_IEN	1		STEP IEN	HD_EN	RAISE_EN	1	RW KW	B1 UV
		_							-	•	
0x14		OTED OLD			STEP_TIME		- ^\			R₩	19
0x13	STEP CFG	STEP_CLR STEP_EN				<u>PPPRECISION<6</u> P SAMPLE CNT<6				RW RW	7F
0x12 0x11	PM	MODE BIT	1	т вете ети	IC_SEL<1:0>	F_SAMFLE_CNI\	MCLK S	DI /2.0\		RW	40
0x10		1	1	1_K31B_31N	C_SEL\1.0/		BW<4:0>	EL\3.0/		R₩	E0
_	FSR	1	1	1	1			<3:0>		RW	FO.
	STEPCNT	-		-	STEP_CN1	[<23:16>	KIIIIOL			R	00
0x0D					5.20.,					R	00
0x0C					HIGH_INT	HIGH SIGN	HIGH FIRST Z	HIGH FIRST Y	HIGH FIRST X	R	00
0x0B					DATA INT	LOW INT				R	00
0x0A			SIG_STEP		_	STEP_INT	HD_INT	RAISE_INT	SIG_MOT_INT	R	00
0x09	INT_ST	NO_MOT				ANY_MOT_SIGN	ANY_MOT_FIRST_Z	ANY_MOT_FIRST_Y	ANY_MOT_FIRST_X	R	00
0x08					STEP_CN	T<15:8>			·	R	00
0x07	STEPCNT				STEP_CI	T<7:0>				R	00
0x06					ACC_Z	(13:6>				R	00
0x05				ACC_Z	<5:0>				NEWDATA_Z	R	00
0x04					ACC_Y	(13:6>		T	1	R	00
0x03				ACC_Y	<u>'<5:0></u>				NEWDATA_Y	R	00
0x02					ACC_X	(13:6>		т	1	R	00
	DATA				(<5:0>				NEWDATA_X	R	00
0x00	CHIP ID		CHIP ID to indicate the product version								ANA

7.2 Register Definition

Register 0x00 (CHIP ID)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
CHIP_ID	<7:0>							RW	0xEX

This register is used to identify the device

Register 0x01 ~ 0x02 (DXL, DXM)

-6	,										
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default		
DX<5:0>							NEWD	R	0x00		
							ATA_X				
DX<13:6	DX<13:6>								0x00		

The information contained herein is the exclusive property of QST, and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of QST.

Title: QMS7926 Datasheet

Rev: A

DX: **NEWDATA X:** 14bits acceleration data of x-channel. This data is in two's complement. 1, acceleration data of x-channel has been updated since last reading

0, acceleration data of x-channel has not been updated since last reading

Register 0x03 ~ 0x04 (DYL, DYM)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
DY<5:0>							NEWD	R	0x00
							ATA_Y		
DY<13:6	>							R	0x00

DY: **NEWDATA Y:** 14bits acceleration data of y-channel. This data is in two's complement. 1, acceleration data of y-channel has been updated since last reading

0, acceleration data of y-channel has not been updated since last reading

Register 0x05 ~ 0x06 (DZL, DZM)

<u> </u>			/						
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
DZ<5:0>							NEWD	R	0x00
					1/7		ATA_Z		
DZ<13:6	>				1/4			R	0x00

DZ:

14bits acceleration data of z-channel. This data is in two's complement.

NEWDATA Z:

1, acceleration data of z-channel has been updated since last reading

0, acceleration data of z-channel has not been updated since last reading

Register 0x07 ~ 0x08 (STEP CNT)

•	Bisto: Cito	, ,,,,,,	<u> </u>	1						
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
	STEP_CN	T<7:0>							R	0x00
	STEP CN	T<15:8>							R	0x00

STEP CNT<15:0> 16 bits of step counter, out of total 24bits data. The MSB data are in 0x0e

Register 0x09 (INT ST0)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
NO_M	SIG_ST			ANY_M	ANY_M	ANY_M	ANY_M	R	0x00
ОТ	EP			OT_SIG	OT_FIR	OT_FIR	OT_FIR		
				N	ST_Z	ST_Y	ST_X		

NO MOT:

1, no_motion interrupt active

0, no motion interrupt inactive

ANY MOT SIGN:

1, sign of any motion triggering signal is negative

0, sign of any_motion triggering signal is positive

ANY MOT FIRST Z:

1, any_motion interrupt is triggered by Z axis

0, any motion interrupt is not triggered by Z axis

	The information contained herein is the exclusive property of QST, and shall not be distributed,
l	reproduced, or disclosed in whole or in part without prior written permission of QST.

Title: QMS7926 Datasheet

Rev: A

ANY MOT FIRST Y:

1, any_motion interrupt is triggered by Y axis

0, any_motion interrupt is not triggered by Y axis

ANY_MOT_FIRST_X:

1, any motion interrupt is triggered by X axis

0, any motion interrupt is not triggered by X axis

Register 0x0a (INT ST1)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
	SIG_ST			STEP_I	HD_IN	RAISE_I	SIG_M	R	0x00
	EP			NT	T	NT	OT_INT		

SIG_STEP: 1, significant step is active

0, significant step is inactive

STEP INT: 1, step valid interrupt is active

0, step quit interrupt is inactive

HD_INT: 1, hand down interrupt is active

0, hand down interrupt is inactive

RAISE_INT: 1, raise hand interrupt is active

0, raise hand interrupt is inactive

SIG_MOT_INT: 1, significant interrupt is active

0, significant interrupt is inactive

Register 0x0b (INT ST2)

- 0									
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
			DATA_I					R	0x00
			NT		/				

DATA INT: 1, data ready interrupt active

0, data ready interrupt inactive

Register 0x0e (STEP CNT)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
STEP_0	NT<23:16>							R	0x00

STEP_CNT<23:16>: 8bit MSB data of step counter, out of total 24bits data. The LSB data are in 0x07 and 0x08

Register 0x0f (FSR)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
1	1	1		RANGE<3:0>			RW	0xF0	

RANGE<3:0>: set the full scale of the accelerometer. Setting as following

The information contained herein is the exclusive property of QST, and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of QST.

Title: QMS7926 Datasheet

Rev: A

RANGE<3	Acceleration	Resolution
:0>	range	
0001	2g	244ug/LSB
0010	4g	488g/LSB
0100	8g	977ug/LSB
1000	16g	1.95mg/LSB
1111	32g	3.91mg/LSB
Others	2g	244ug/LSB

Register 0x10 (BW)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
1	1	1	BW<4:0>	BW<4:0>				RW	0xE0

BW<4:0>: bandwidth setting, as following

BW<4:0>	ODR
xx000	MCLK/7695
xx001	MCLK/3855
xx010	MCLK/1935
xx011	MCLK/975
xx100	
xx101	MCLK/15375
xx110	MCLK/30735
xx111	MCLK/61455
Others	MCLK/7695

Register 0x11 (PM)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
MODE	1	T_RSTB_	SINC_SE	MCLK_SE	EL<3:0>			RW	0x40
_BIT		L<1:0>							

MODE_BIT:

1, set device into active mode

0, set device into standby mode

T_RSTB_SINC_SEL<1:0>: Reset clock setting. The preset time is reserved for CIC filter in digital

11, T RSTB SINC=8*MCLK 10, T_RSTB_SINC=6*MCLK 01, T RSTB SINC=4*MCLK 00, T_RSTB_SINC=3*MCLK

MCLK_SEL<3:0>: set the master clock to digital

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.

Title: QMS7926 Datasheet

Rev: A

MCLK_SEL<3:0>	Freq of MCLK
0000	500KHz
0001	333KHz
0010	200KHz
0011	100KHz
0100	50KHz
0101	25KHz
0110	12.5KHz
0111	5KHz
1xxx	Reserved

Register 0x12 (STEP_CONF0)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
STEP_EN	STEP_SA	MPLE_CN	T<6:0>			/ X		RW	0x14

STEP EN:

enable step counter, this bit should be set when using step counter

STEP_SAMPLE_CNT:

sample count setting for dynamic threshold calculation. The actual value is STEP SAMPLE CNT<6:0>*8, default is 0xC, 96 sample count

Register 0x13 (STEP CONF1)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
STEP_CLR	STEP_PR	ECISION<	5:0>					RW	0x7F

STEP CLR:

clear step count in register 0x07,0x08 and 0x0E

STEP PRECISION<6:0>:

threshold for acceleration change of two successive sample which is used to update sample new register in step counter, the actual g value is

STEP PRECISION<6:0>*LSB*16 when STEP PRECISION<6:0>!=0000000 & !=1111111

When STEP PRECISION<6:0>=0000000, always use P2P/8

When STEP PRECISION<6:0>=1111111, always use P2P/16

When STEP PRECISION<6:0>=?, always use P2P/4

Register 0x14 (STEP CONF2)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
STEP_	TIME_LOW<	7:0>						RW	0x19

STEP TIME LOW<7:0>: the short time window for a valid step, the actual time is STEP_TIME_LOW<7:0>*(1/ODR)

Register 0x15 (STEP CONF3)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
STEP_TIME_UP<7:0>					RW	0x00			

The information contained herein is the exclusive property of QST, and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of QST.

Title: QMS7926 Datasheet

Rev: A

STEP TIME UP<7:0>: time window for quitting step counter, the actual time is

STEP_TIME_UP<7:0>*8*(1/ODR)

Register 0x16 (INT EN0)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
1	SIG_ST	1	1	STEP_I	HD_EN	RAISE_	1	RW	0xB1
	EP_IEN			EN		EN			

SIG STEP IEN: 1, enable significant step interrupt

0, disable significant step interrupt

STEP_IEN: 1, enable step valid interrupt

0, disable step valid interrupt

HD_EN: 1, enable hand-down interrupt

0, disable hand-down interrupt

RAISE_EN: 1, enable raise-hand interrupt

0, disable raise-hand interrupt

Register 0x17 (INT EN1)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
1	1	1	INT_DA TA EN	Y	7			RW	0xE0

INT DATA EN: 1, enable data ready interrupt

0, disable data ready interrupt

Register 0x18 (INT_EN2)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
NO_MO	NO_MO	NO_MO	1	1	ANY_MO	ANY_MO	ANY_MO	RW	0x18
T_EN_Z	T_EN_Y	T_EN_X	±	1	T_EN_Z	T_EN_Y	T_EN_X	11.00	OXIO

NO MOT EN Z: 1, enable no motion interrupt on Z axis

0, disable no motion interrupt on Z axis

NO_MOT_EN_Y: 1, enable no_motion interrupt on Y axis

0, disable no motion interrupt on Y axis

NO_MOT_EN_X: 1, enable no_motion interrupt on X axis

0, disable no motion interrupt on X axis

ANY_MOT_EN_Z: 1, enable any_motion interrupt on Z axis

0, disable any motion interrupt on Z axis

ANY MOT EN Y: 1, enable any motion interrupt on Y axis

0, disable any motion interrupt on Y axis

ANY_MOT_EN_X: 1, enable any_motion interrupt on X axis

0, disable any motion interrupt on X axis

Register 0x19 (INT MAP0)

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.

Title: QMS7926 Datasheet

Rev: A

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
1	INT1_SIG	1	1	INT1_S	INT1_H	INT1_R	INT1_SI	RW	0xB0
	_STEP			TEP	D	AISE	G_MOT		

INT1 SIG STEP:

1, map significant step interrupt to INT1 pin

0, not map significant step interrupt to INT1 pin

INT1_STEP:

1, map step valid interrupt to INT1 pin

0, not map step valid interrupt to INT1 pin

INT1_HD:

1, map hand down interrupt to INT1 pin

0, not map hand down interrupt to INT1 pin

INT1 RAISE:

1, map raise hand interrupt to INT1 pin

0, not map raise hand interrupt to INT1 pin

INT1_SIG_MOT:

1, map significant interrupt to INT1 pin

0, not map significant interrupt to INT1 pin

Register 0x1a (INT MAP1)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
INT1_NO	1	1	INT1_D			1	INT1_AN	RW	0x62
_MOT			ATA				Y_MOT		

INT1_NO_MOT: 1, map no_motion interrupt to INT1 pin

0, not map no motion interrupt to INT1 pin

INT1_DATA: 1, map data ready interrupt to INT1 pin

0, not map data ready interrupt to INT1 pin

INT1_ANY_MOT: 1, map any motion interrupt to INT1 pin

0, not map any motion interrupt to INT1 pin

Register 0x1b (INT MAP2)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
1	INT2_SI	1	1	INT2_	INT2_	INT2_RAI	INT2_SIG_	RW	0xB0
	G STEP			STEP	HD	SE	MOT		

INT2 SIG STEP: 1, map significant step interrupt to INT2 pin

0, not map significant step interrupt to INT2 pin

INT2 STEP: 1, map step valid interrupt to INT2 pin

0, not map step valid interrupt to INT2 pin

INT2 HD: 1, map hand down interrupt to INT2 pin

0, not map hand down interrupt to INT2 pin

INT2_RAISE: 1, map raise hand interrupt to INT2 pin

0, not map raise hand interrupt to INT2 pin

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.

Document #:

13-52-18

Title: QMS7926 Datasheet

Rev: A

INT2_SIG_MOT: 1, map significant interrupt to INT2 pin

0, not map significant interrupt to INT2 pin

Register 0x1c (INT MAP3)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
INT2_N	1	1	INT2_D			1	INT2_AN	RW	0x62
O_MOT			ATA				Y_MOT		

INT2_NO_MOT: 1, map no motion interrupt to INT2 pin

0, not map no motion interrupt to INT2 pin

INT2_DATA: 1, map register data ready interrupt to INT2 pin

0, not map register data ready interrupt to INT2 pin

INT2_ANY_MOT: 1, map any motion interrupt to INT2 pin

0, not map any motion interrupt to INT2 pin

Register 0x1d (SIG STEP TH)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
STEP INT								RW	0x00

STEP_INTERVAL <7:0>:threshold of significant step. When MOD(STEP_CNT, STEP_INTERVAL)=0, SIG_STEP_INT will be generated.

Register 0x1e (raise hand: X TH Z TH)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
Z_TH<3:0)>			X_TH<3:	0>			RW	0x66

X TH<3:0>: 0~7.5, LSB 0.5 (unit: m/s2)

Z TH<3:0>: -8~7, LSB 1 (unit: m/s2)

Register 0x1f

<u> </u>									
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
STEP_ST	STEP_START_CNT<2:0>			UNT_PE	STEP_COUNT_P2P<2:0>			RW	0xA9
			AK<1:0>						

STEP START CNT<2:0>: th step pattern = 0/4/8/12/16/24/32/40

STEP_COUNT_PEAK<2:0>: FIXED_PEAK = 0.05g + 0.05g * STEP_COUNT_PEAK<2:0>.

This FIXED_PEAK is used in algorithm of STEP COUNTER.

STEP_COUNT_PEAK<2> is in register 0x20<4> and

STEP COUNT PEAK[2:0]= $\{0x20[4], 0x1F[4:3]\}$

STEP_COUNT_P2P<2:0>: $FIXED_P2P = 0.3g + 0.1g * STEP_COUNT_P2P<2:0$ >.

 $STEP_COUNT_P2P[3:0] = {0x1F[2:0]}$

Register 0x20 (INTPIN_CONF)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
DIS_PU	DIS_IE	EN_SPI	STEP_COUNT	INT2_	INT2_	INT1_	INIT1 1\/I	D\A/	0x05
_SENB	_AD0	3W	_PEAK<2>	OD	LVL	OD	INT1_LVL	RW	UXUS

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.

Title: QMS7926 Datasheet

Rev: A

DIS_PU_SENB: 1, disable pull-up resistor of PIN_SENB

0, enable pull-up resistor of PIN SENB

DIS_IE_ADO: 1, disable input of ADO

0, not disable input of AD0

EN_SPI3W: 1, enable 3W SPI

0, 4W SPI

STEP COUNT PEAK<2>: Definition in 0x1F<4:3>

INT2_OD: 1, open-drain for INT2 pin

0, push-pull for INT2 pin

INT2_LVL: 1, logic high as active level for INT2 pin

0, logic low as active level for INT2 pin

INT1_OD: 1, open-drain for INT1 pin

0, push-pull for INT1 pin

INT1_LVL: 1, logic high as active level for INT1 pin

0, logic low as active level for INT1 pin

Register 0x21 (INT CFG)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
INT_RD_ CLR	SHADOW DIS	DIS_I2C	1	1	1	LATCH_INT STEP	LATCH_ INT	RW	0x1C

INT RD CLR:

- 1, clear all the interrupts in latched-mode, when any read operation to any of registers from 0x09 to 0x0D
- 0, clear the related interrupts, only when read the register INT_ST (0x09 to 0x0D), no matter the interrupts in latched-mode, or in non-latched-mode.

 Reading 0x09 will clear the register 0x09 only and the others keep the status

SHADOW DIS:

- 1, disable the shadowing function for the acceleration data
- 0, enable the shadowing function for the acceleration data.

When shadowing is enabled, the MSB of the acceleration data is locked,

when corresponding LSB of the data is reading.

This can ensure the integrity of the acceleration data during the reading.

The MSB will be unlocked when the MSB is read.

DIS 12C: 1: disable 12C. Setting this bit to 1 in SPI mode is recommended

0: enable I2C

LATCH_INT_STEP: 1, step related interrupt is in latch mode

0, step related interrupt is in non-latch mode

LATCH_INT: 1, interrupt is in latch mode

0, interrupt is in non-latch mode

Register 0x27 (OS_CUST_X)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
OS_CUS	Γ_X<7:0>							RW	0x00

The information contained herein is the exclusive property of QST, and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of QST.

Т

Title: QMS7926 Datasheet

Rev: A

OS_CUST_X<7:0>: offset calibration of X axis for user, the LSB depends on full-scale of the device which is 3.9mg in 2g range,

7.8mg in 4g range, 15.6mg in 8g range, 31.2mg in 16g, and 62.5mg in 32g

Register 0x28 (OS CUST Y)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
OS_CUST	Γ_Y<7:0>							RW	0x00

OS_CUST_Y<7:0>: offset calibration of Y axis for user, the LSB depends on full-scale of the device which is 3.9mg in 2g range,

7.8mg in 4g range, 15.6mg in 8g range, 31.2mg in 16g, and 62.5mg in 32g

Register 0x29 (OS CUST Z)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
OS_CUST	Γ_Z<7:0>							RW	0x00

OS_CUST_Z<7:0>: offset calibration of Z axis for user, the LSB depends on full-scale of the device which is 3.9mg in 2g range,

7.8mg in 4g range, 15.6mg in 8g range, 31.2mg in 16g, and 62.5mg in 32g

Register 0x2a (RAISE WAKE SUM TH RAISE WAKE DIFF TH)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
RAISE_W	/AKE_DI	RAISE_W	AKE_SUM	1_TH<5:0>	. / / 📉			RW	0xD8
FF TH<1	:0>				/				

RAISE_WAKE_SUM_TH <5:0>: 0 ~ 31.5 (LSB 0.5 m/s2)

RAISE_WAKE_DIFF_TH<3:0>	UNIT (m/s ²)
0	0.2
1	0.3
2	0.4
3	0.5
4	0.6
5	0.7
6	0.8
7	0.9
8	1.0
9	1.1
10	1.2
default	0.2

Register 0x2b (RAISE_WAKE_DIFF_TH HD_X_TH HD_Z_TH)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
HD_Z_TH<2:0>		HD_X_TH<2:0>		RAISE_WAKE_DIFF		RW	0x7C		
					_TH<3:2>				

The information contained herein is the exclusive property of QST, and shall not be distributed,	
reproduced, or disclosed in whole or in part without prior written permission of QST.	

Title: QMS7926 Datasheet

Rev: A

HD_X_TH<2:0>: hand down x threshold, 0^7 (m/s2) HD_Z_TH<2:0>: hand down z threshold, 0^7 (m/s2)

Register 0x2c (MOT_CONF0)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
NO_MO	T_DUR<5	:0>				ANY_MOT	_DUR<1:0>	RW	0x00

NO_MOT_DUR<5:0>: no motion interrupt will be triggered when slope < NO_MOT_TH for the times which defined by NO_MOT_DUR<5:0>

Duration = (NO_MOT_DUR<3:0> + 1) * 1s, if NO_MOT_DUR<5:4> =b00

Duration = (NO_MOT_DUR<3:0> + 4) * 5s, if NO_MOT_DUR<5:4> =b01

Duration = (NO_MOT_DUR<3:0> + 10) * 10s, if NO_MOT_DUR<5:4> =b1x

ANY_MOT_DUR<1:0>: any motion interrupt will be triggered when slope > ANY_MOT_TH for (ANY_MOT_DUR<1:0> + 1) samples

Register 0x2d (MOT CONF1)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
NO_MO	T_TH<7:0>	>			\ ///			RW	0x00

NO_MOT_TH<7:0>: Threshold of no-motion interrupt. The threshold definition is as following TH= NO MOT TH<7:0> * 16 * LSB

Register 0x2e (MOT CONF2)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
ANY MC	T TH<7:0)>						RW	0x00

ANY_MOT_TH<7:0>: Threshold of any motion interrupt. The threshold definition is as following TH= ANY MOT TH<7:0> * 16 * LSB

Register 0x2f (MOT CONF3)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
		SIG_MOT_TPRO		SIG_MOT_TSKIP<			SIG_M	RW	0x00
		OF<1:0>		1:0>			OT_SEL		

SIG MOT TPROOF<1:0>: 00, T PROOF=0.25s

01, T PROOF=0.5s

10, T_PROOF=1s

11, T PROOF=2s

SIG MOT TSKIP<1:0>: 00, T SKIP=1.5s

01, T SKIP=3s

10, T SKIP=6s

11, T_SKIP=12s

SIG MOT SEL: 1, select significant motion interrupt

0, select any motion interrupt

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.

Title: QMS7926 Datasheet

Rev: A

Register 0x30

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
MO_BP	STEP_BP				NO_MOT_	SIG_MOT_	ANY_MOT	RW	0x1F
_CO	_CO				RST_N	RST_N	_RST_N		

MO_BP_CO:

1, motion detector will use data without OS CUST

0, motion detector will use data with OS CUST

STEP BP CO:

1, pedometer will use data without OS_CUST

0, pedometer will use data with OS CUST

NO MOT RST N: 0, Reset no motion detector. After reset, user should write 1 back.

SIG_MOT_RST_N: 0, Reset significant motion detector. After reset, user should write 1 back.

ANY MOT RST N: 0, Reset any motion detector. After reset, user should write 1 back.

Register 0x32 (ST)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
SELFTE					SELFTEST	BP_AXIS	_STEP<1	RW	0x00
ST BIT	•				SIGN	:0>			

SELFTEST_BIT:

1, self-test enabled. When self-test enabled, a delay of 3ms is necessary for the

value settling.

0, normal

SELFTEST SIGN:

1, set self-test excitation positive

0, set self-test excitation negative

BP_AXIS_STEP<1:0>: 11, bypass Z axis, use only X and Y axes data for step counter algorithm

10, bypass Y axis, use only X and Z axes data for step counter algorithm

01, bypass X axis, use only Y and Z axes data for step counter algorithm

00, use all of 3 axes data for step counter algorithm

Register 0x34 (Y TH YZ TH SEL)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
YZ_TH_S	EL<2:0>		Y_TH<4:0	0>				RW	0x9D

Y TH: -16 ~ 15 (m/s2)

YZ_TH_SEL<2:0>	UNIT (m/s2)
0	7.0
1	7.5
2	8.0
3	8.5
4	9.0

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.

Title: QMS7926 Datasheet

Rev: A

5	9.5
6	10.0
7	10.5

Register 0x35 (RAISE WAKE PERIOD)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
RAISE_W	/AKE_PERI	OD<7:0>						RW	0x81

RAISE_WAKE_PERIOD<10:0> * ODR period = wake count (EX. ODR = 1ms, 0X35 = 100 → wake count = 0.1 sec)

Register 0x36 (SR)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
SOFT_RE							RW	0x00	

SOFT RESET: 0xB6, soft reset all of the registers. After soft-reset, user should write 0x00 back

Register 0x3e (RAISE WAKE TIMEOUT TH)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
RAISE_WAKE_TIMEOUT_TH<7:0>						X		RW	0x00

RAISE_WAKE_TIMEOUT_TH<11:0> * ODR period = timeout count (EX. ODR = 1ms, 0X3e = 100 → timeout count = 0.1 sec)

Register 0x3f (RAISE WAKE TIMEOUT TH RAISE WAKE PERIOD RAISE WAKE EN)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
	RAISE W	AKE PERIO	D<10:8>	RAISE W	AKE TIM	EOUT TH	<11:8>	RW	0x02

Document #: 13-52-18 **Title:** QMS7926 Datasheet **Rev: A**

MCU Introduction

QMS7926 is a System on Chip (SoC) for Bluetooth® low energy applications. QMS7926 has 32-bit ARM® Cortex™-M0 CPU with 138KSRAM/Retention SRAM and an ultra-low power, high performance, multi-mode radio. QMS7926 can support BLE with security, application and over-the-air download update. Serial peripheral IO and integrated application IP enables customer product to be built with minimum bill-of-material (BOM) cost.

1 Product Overview

1.1 Block Diagram

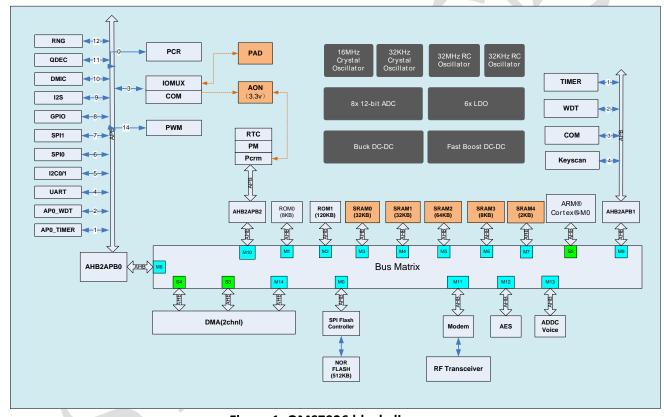


Figure 1: QMS7926 block diagram

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.

Document #: 13-52-18 **Title:** QMS7926 Datasheet **Rev: A**

2 System Blocks

The system block diagram of QMS7926 is shown in Figure 1.

2.1 CPU

The QMS7926 has an ARM Cortex-M0 CPU. The CPU, memories, and all peripherals are connected by AMBA bus fabrics.

The ARM® Cortex[™]-M0 CPU has a 16-bit instruction set with 32-bit extensions (Thumb-2® technology) that delivers high-density code with a small-memory-footprint. By using a single-cycle 32-bit multiplier, a 3-stage pipeline and a Nested Vector Interrupt Controller (NVIC), the ARM Cortex[™]-M0 CPU makes program execution simple and highly efficient.

The CPU will play controller role in BLE modem and run all user applications. The following main features are listed below.

- Up to 48Mhz ARM Cortex™-M0 processor core.
 - Low gate count and high energy efficient.
 - o ARMv6M architecture, Thumb ISA but no ARM ISA.
 - No cache and no TCM.
 - Up to 32 interrupts embedded NVIC.
 - SysTick timer.
 - Sleep/deep sleep mode.
 - Support low power WFI and WFE
- 4 32-bit general purpose timers and 1 watchdog timer (WDT).
- 120KB ROM for boot and protocol stack.
- 138KB retention SRAM for program and data.
- AHB to APB Bridge for peripherals and registers.
- Clock and reset controller.
- AHB debug access port interface and DAP ROM.
- APB interface to/from BLE modem.
- Dynamic and static clock gating to save power.
- No TRACE.

Some of these features are shared with the AP subsystem.

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.

2.2 Memory

QMS7926 has total 128KB ROM, 138KB SRAM and up to 512KB FLASH. The physical address space of these memories is shown in **Figure2**.

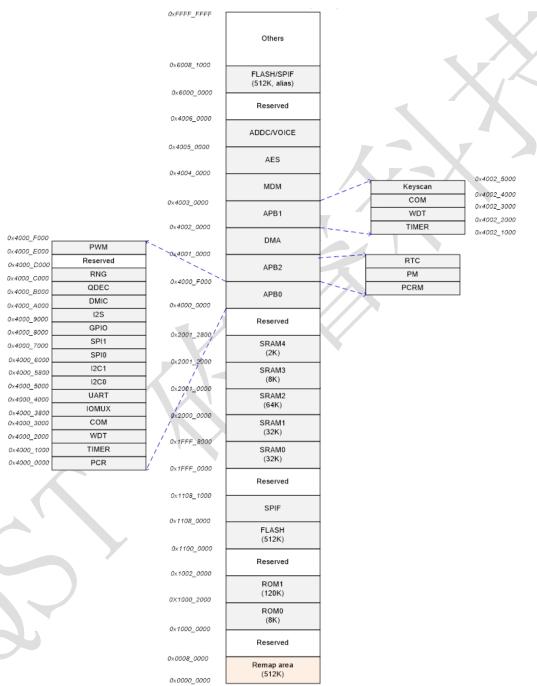


Figure 2: QMS7926 memory space

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.

Title: QMS7926 Datasheet

Rev: A

2.2.1 ROM

QMS7926 has 2 ROMs.

	SIZE	CONTENT
ROM0	8KB	Reserved
		Boot ROM for M0.
ROM1	120KB	Protocol stack.
		Common peripheral drivers.

Table 1: List of ROMs

2.2.1 SRAM

QMS7926 has 5 SRAM blocks. All 5 SRAM blocks have retention capability. which can be configured individually. All SRAM blocks can be used to store program or data.

	SIZE	CONTENT
SRAM0	32KB	
SRAM1	32KB	
SRAM2	64KB	
SRAM3	8KB	
SRAM4	2KB	

Table 2: List of SRAMs

2.2.3 FLASH

QMS7926 has FLASH to provide non-volatile program and data storage. The size of the FLASH can be 256KB or 512KB. QMS7926 supports 2-wire reading.

2.2.4 Memory Address Mapping

2.2.4	Wellioly Auu			1			
Name	Name Size (KB) Master		Physical Address	CM4 Alias	N	/10 Rema	p
					0	1	2
ROM0	8	M0	1000_0000~1000_1FFF	0x0			
ROM1	120	M0	1000_2000~1001_FFFF		0x0		
RAM0	32	M0	1FFF_0000~1FFF_7FFF				
RAM1	RAM1 32 M0 RAM2 64 M0 RAM3 8 M0		1FFF_8000~1FFF_FFFF				
RAM2			2000_0000~2000_FFFF			0x0	
RAM3			2001_0000~2001_1FFF				
RAM4 2 M0 FLASH 512 M0		M0	2001_2000~2001_27FF				
		1100_0000~1107_FFFF				0x0	
		6000_0000~6007_FFFF					

Table 3: Memory address mapping

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.	38 / 148
--	----------

2.3 Boot and Execution Modes

During the boot, the ROM1 is aliased to 0x0 address. The M0 starts to execute the program from the ROM1.

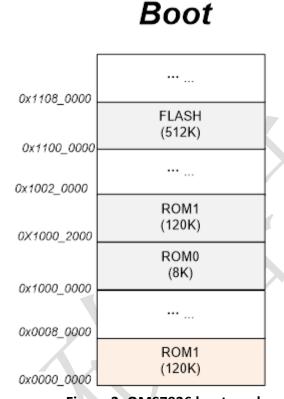


Figure 3: QMS7926 boot mode

2.3.1 Mirror Mode

The mirror mode is not tied to the chip variations. Any chip variation can use mirror mode to execute program. In the mirror mode, the program is copied from the FLASH to the SRAM, then is executed in the SRAM. For the M0 processor, one of the SRAM blocks must be aliased to 0x0 address.

2.3.2 FLASH Mode

The FLASH mode is not tied to the chip variations. Any chip variation can use FLASH mode to execute program. In the FLASH mode, the program is executed in the FLASH. For the M0 processor, the FLASH must be aliased to 0x0 address.

2.3.3 Boot loader

The boot loader in the ROM has the basic structure as shown below. The content in the FLASH should be specifically defined to allow boot loader to identify whether the FLASH content is valid, as shown in the example below. If the FLASH is valid, the ROM boot loader will put the chip in the normal

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.

mode and start normal program execution. If the FLASH is not valid, the boot loader will enter FLASH programming mode.

Address	Variable	Content
0	PRODUCT_MODE	Identify the chip mode
4	CODE_BASE	The base address of the code
8	CODE_LEN	The length of the code
С	BOOT_MODE	Identify mirror or FLASH mode

Table 4: Flash content example

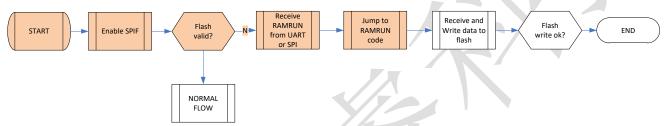


Figure 4: Bootloader flow

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.

Document #: 13-52-18 **T**:

Title: QMS7926 Datasheet

Rev: A

2.4 Power, Clock and Reset (PCR)

Figure 5: QMS7926 power, clock and reset

2.5 Power Management (POWER)

The power management system is highly flexible with functional blocks such as the CPU, radio transceiver, and peripherals saving separate power state control in addition to the System Sleep mode and OFF modes. When in System Normal mode, all functional blocks will independently be turned on depending on needed application functionality.

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.

Document #: 13-52-18 **Ti**

Title: QMS7926 Datasheet

Rev: A

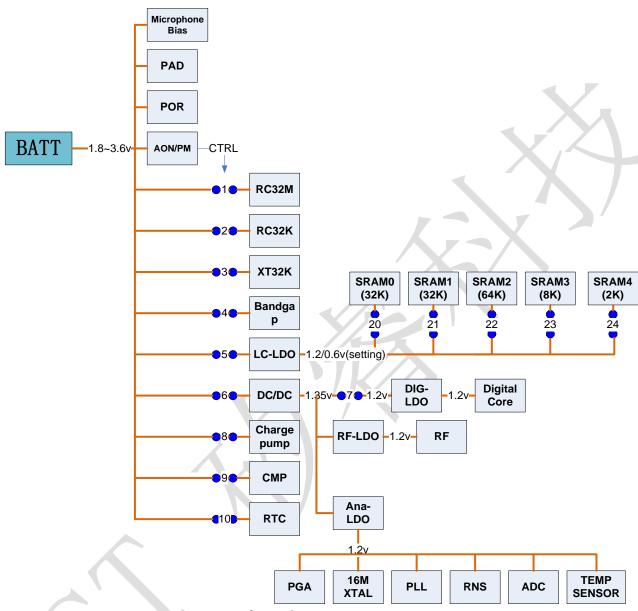


Figure 6: Power system

The following diagram is Normal, Sleep and Off mode. Switches are optional depending on user's request.

Switch	Normal	Sleep	Off
1RC32M	On	Off	Off
2RC32K	On	Optional	Off
3XT32K	On	Optional	Off
4bandgap	On	Off	Off

The information contained herein is the exclusive property of QST, and shall not be distributed,	
reproduced, or disclosed in whole or in part without prior written permission of QST.	2

砂容	Document #:	13-52-18	Title: (QMS7926 Datasheet	Rev: A
----	-------------	----------	----------	-------------------	--------

5LC-LDO	On	on	Off
6DC/DC	On	Off	Off
7DIG-LDO	On	Off	Off
8charge pump	On	Off	Off
9CMP	On	Optional	Off
10RTC	On	Optional	Off
20SRAM-32K	1.2v	0.6v	0
21SRAM-32K	1.2v	0.6v	0
22SRAM-64K	1.2v	0.6v	0
23SRAM-8K	1.2v	0.6v	0
24SRAM-2K	1.2v	0.6v	0

Table 5: Flash Switches of different power modes

2.6 Low Power Features

2.6.1 Operation and Sleep States

2.6.1.1 Normal State

2.6.1.2 Clock Gate State

The CPU executes WFI/WFE to enter clock gate state. After wake-up from clock-gate state, the CPU continues to execute the program from where it stopped. The wake-up sources includes interrupts and events. The wake-up sources are configured by the software according to applications.

2.6.1.3 System Sleep State

The wake-up sources include:

- IO
- RTC
- RESET
- UVLO reset

2.6.1.4 System Off State

The wake-up sources include:

- IOs
- RESET
- UVLO reset

2.6.2 State Transition

2.6.2.1 Entering Clock Gate State and Wake-up

CPU executes WFI/WFE.

2.6.2.2 Entering Sleep/off States and Wake-up

The PM registers identify whether the CPU is in mirror mode or FLASH mode before sleep or off, and record the remap and vectors. The CPU configures the corresponding PM registers to put the

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.	43 / 148
--	----------

Title: QMS7926 Datasheet

Rev: A

chip into sleep or off mode. After wake-up, the chip enters boot mode to execute boot code in the ROM. The ROM code checks the mode before sleep/off and the remap information, perform corresponding configurations, and starts to execute the program.

2.7 Interrupts

M0 Interrupt Number
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

Table 6: Interrupts

	The information contained herein is the exclusive property of QST, and shall not be distributed,	44 / 148
ı	reproduced, or disclosed in whole or in part without prior written permission of QST.	44 / 140

2.8 Clock Management (CLOCK)

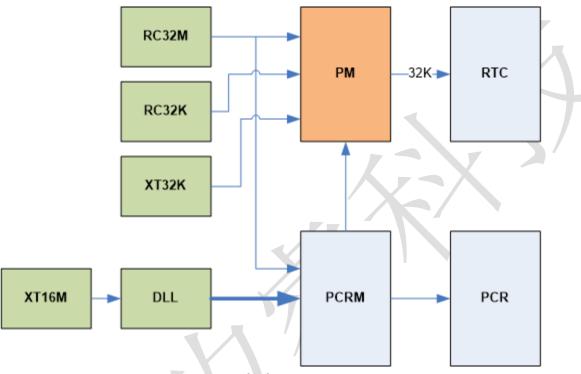


Figure 7: Clock management

There are two crystal clock sources: 16MHz crystal oscillator (XT16M) and 32.768kHz crystal oscillator (XT32k), of which the 32.768k crystal oscillator is optional. There are also two on chip RC oscillators: 32MHz RC oscillator (RC32M) and 32kHz RC oscillator (RC32k), both of which can be calibrated with respect to 16MHz crystal oscillator. If 32.768kHz crystal is not installed, RC32k oscillator would be periodically calibrated and used for RTC. At initial power up or wake up before XT16M oscillator starts up, RC32M is used as the main clock. An on-chip DLL generates higher frequency clocks such as 32/48/64/96MHz from the XT16M clock source.

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.

Document #: 13-52-18 **Title:** QMS792

Title: QMS7926 Datasheet Rev: A

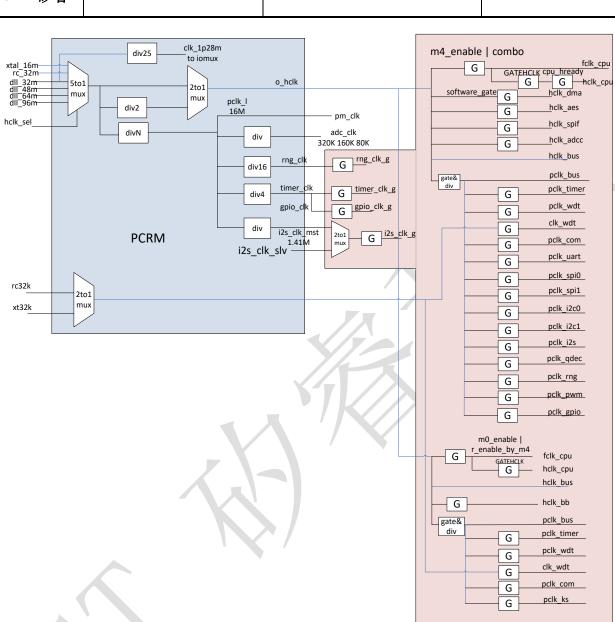


Figure 8: Clock structure diagram

i_rf_clk

i_bb_clk

2.9 IOMUX

The IOMUX provides a flexible I/O configuration, as the ports of most of the peripherals can be configured and mapped to any of the physical I/O pads (I/O at die boundary). These peripheral modules include I2C 0-1, I2S, UART, PWM 0-5, SPI 0-1, Quadrature Decoder etc. However for other specific purpose peripherals, their IOs mappings are fixed when they are enabled. These specific purpose peripherals include JTAG, analog ios, GPIOs and key scan.

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.

46 / 148

rf_clk

bb_clk

G

G

Title: QMS7926 Datasheet

Rev: A

Figure 11 below shows the IOMUX functional diagram.

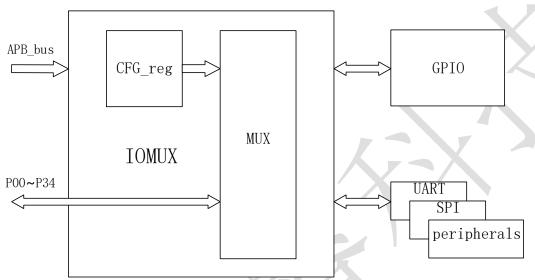


Figure 9: IOMUX structure diagram

There are 34 configurable pads which are from P00 to P07 and from P09 to P34. P08 pad is assigned for TM pin which is a test mode pin. The table blow shows the mapping of the peripheral IOs that can be mapped through IOMUX. These include I2C 0-1, I2S, UART, PWM 0-5, SPI 0-1, Quadrature Decoder, 1.28MHz clock and dmic out.

Signal Name	IO	FULLMUX
iic0_scl	В	0
iic0_sda	В	1
iic1_scl	В	2
iic1_sda	В	3
i2s_sck	В	4
i2s_ws	В	5
i2s_sdo0	0	6
i2s_sdo1	0	35
i2s_sdo2	0	36
i2s_sdo3	0	37
i2s_sdi0	1	7
i2s_sdi1	1	38
i2s_sdi2	1	39

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.

i2s_sdi3	1	40
uart_tx	0	8
uart_rx	I	9
pwm0	0	10
pwm1	0	11
pwm2	0	12
pwm3	0	13
pwm4	0	14
pwm5	0	15
spi_0_sck	В	16
spi_0_ssn	В	17
spi_0_tx	0	18
spi_0_rx	1	19
spi_1_sck	В	20
spi_1_ssn	В	21
spi_1_tx	0	22
spi_1_rx	1	23
chax	I	24
chbx	1	25
chix	1	26
chay	1	27
chby	1	28
chiy	1	29
chaz	1	30
chbz	I	31
chiz	1	32
clk_1p28m	0	33
adcc_dmic_out	1	34

Table 7: Peripheral IO mapped through IOMUX

On the other hand, there are also special purpose peripherals, whose IOs are fixed to certain physical pads, when these peripheral functions are enabled. These special purpose peripherals include: JTAG, analog I/Os (ADC inputs), GPIO, and key scan. When they are enabled, their IOs are mapped to physical pads according to the following table (by default JTAG is enabled).

Number	GPIO			Name
0	GPIO_P00	jtag_dout	GPIO	mk_in[0]
1	GPIO_P01	jtag_din	GPIO	mk_out[0]
2	GPIO_P02	jtag_tm	GPIO	mk_in[1]

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.	48 / 148
--	----------

3	GPIO_P03	jtag_clk	GPIO		mk_out[1]
4	GPIO_P04	GPIO			mk_out[9]
5	GPIO_P05	GPIO			mk_in[10]
6	GPIO_P06	GPIO			mk_out[10]
7	GPIO_P07	GPIO			mk_in[11]
8	TEST_MODE				
9	GPIO_P09	GPIO			mk_out[4]
10	GPIO_P10	GPIO			mk_in[4]
11	GPIO_P11	GPIO		analog_io[0]	mk_out[11]
12	GPIO_P12	GPIO		analog_io[1]	mk_in[12]
13	GPIO_P13	GPIO		analog_io[2]	mk_out[12]
14	GPIO_P14	GPIO		analog_io[3]	mk_out[2]
15	GPIO_P15	GPIO		analog_io[4]	mk_in[2]
16	GPIO_P16	XTALI(ANA)	GPIO		mk_out[16]
17	GPIO_P17	XTALO(ANA)	GPIO		mk_out[17]
18	GPIO_P18	GPIO		analog_io[7]	mk_in[5]
19	GPIO_P19	GPIO		analog_io[8]	mk_in[13]
20	GPIO_P20	GPIO		analog_io[9]	mk_out[5]
21	GPIO_P21	GPIO			mk_out[13]
22	GPIO_P23	GPIO			mk_in[6]
23	GPIO_P25	GPIO			mk_in[3]
24	GPIO_P26	GPIO			mk_out[14]
25	GPIO_P28	GPIO			mk_out[8]
26	GPIO_P31	spi_t_ssn	GPIO		mk_out[7]
27	GPIO_P32	spi_t_rx	GPIO		mk_in[7]
28	GPIO_P33	spi_t_tx	GPIO		mk_out[6]
29	GPIO_P34	spi_t_sck	GPIO		mk_in[8]

Table 8: Peripheral IO mapped through IOMUX (special purpose)

In the IOMUX table above, the first column is the IO pad mapping in default mode, when no IOMUX function is selected and no special purpose peripherals such as analog IO, GPIO<0:3>, key scan, are enabled. In this mode, pin<0:3> are used for JTAG.

When analog IOs are enabled, pins<11:15>, <18:20> are connected to internal analog IOs. More specifically, analog_io<0:4><9> are connected to ADC inputs, analog_io<7,8> are connected to PGA inputs.

In JTAG mode, data output for JTAG test mode is mapped to P00; data input for JTAG test mode is mapped to P01; mode control input for JTAG test mode is mapped to P02; clock input for JTAG test

The information contained herein is the exclusive property of QST, and shall not be distributed,	
reproduced, or disclosed in whole or in part without prior written permission of QST.	

Title: QMS7926 Datasheet

Rev: A

mode is mapped to P03.

2.9.1 Register table

Detailed IOMUX register table and physical IO pad control are shown below.

Base address: 4000_3800

OFFSET	TYPE	RESET	NAME	DESCRIPTION
0x0			r_analog_io	X
[31:10]	RW	22'h0	reserved	
[9:0]	RW	10'h60	r_analog_io_en	Analog IO enable
Охс			full_mux0	register description
[31:0]	RW	32'h0	r_func_io_en[31:0]	full mux enable. [8] must set to 0
0x10			full_mux1	register description
[31:3]	RW	29'h0	reserved	V/724
[2:0]	RW	3'h0	r_func_io_en[34:32]	full mux enable
0x14			gpio_papb	register description
[31:17]	RW	15'h0	reserved	
[16]	RW	1'h0	r_gpio_pb_16_en	gpio_16 enable
[15]	RW	1'h0	r_gpio_pb_15_en	gpio_15 enable
[14]	RW	1'h0	r_gpio_pb_14_en	gpio_14 enable
[13]	RW	1'h0	r_gpio_pb_13_en	gpio_13 enable
[12:4]	RW	9'h0	reserved	
[3]	RW	1'h0	r_gpio_pa_03_en	gpio_03 enable
[2]	RW	1'h0	r_gpio_pa_02_en	gpio_02 enable
[1]	RW	1'h0	r_gpio_pa_01_en	gpio_01 enable
[0]	RW	1'h0	r_gpio_pa_00_en	gpio_00 enable
0x18	(func_io0	register description
[31:30]	RW	2'h0	reserved	
[29:24]	RW	6'h0	r_func_io03_sel	pad 3 full mux function select
[23:22]	RW	2'h0	reserved	
[21:16]	RW	6'h0	r_func_io02_sel	pad 2 full mux function select
[15:14]	RW	2'h0	reserved	
[13:8]	RW	6'h0	r_func_io01_sel	pad 1 full mux function select
[7:6]	RW	2'h0	reserved	
[5:0]	RW	6'h0	r_func_io00_sel	pad 0 full mux function select
0x1c			func_io1	register description

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.

[31:30] RW 2'h0 reserved [29:24] RW 6'h0 r_func_io07_sel pad 7 full mux function select [23:22] RW 2'h0 reserved [21:16] RW 6'h0 r_func_io06_sel pad 6 full mux function select [15:14] RW 2'h0 reserved [13:8] RW 6'h0 r_func_io05_sel pad 5 full mux function select
[23:22] RW 2'h0 reserved [21:16] RW 6'h0 r_func_io06_sel pad 6 full mux function select [15:14] RW 2'h0 reserved
[21:16] RW 6'h0 r_func_io06_sel pad 6 full mux function select [15:14] RW 2'h0 reserved
[15:14] RW 2'h0 reserved
[13:8] RW 6'n0 r func 1005 set pad 5 full mux function select
[7:6] RW 2'h0 reserved
[5:0] RW 6'h0 r_func_io04_sel pad 4 full mux function select
0x20 func_io2 register description
[31:30] RW 2'h0 reserved
[29:24] RW 6'h0 r_func_io11_sel pad 11 full mux function select
[23:22] RW 2'h0 reserved
[21:16] RW 6'h0 r_func_io10_sel pad 10 full mux function select
[15:14] RW 2'h0 reserved
[13:8] RW 6'h0 r_func_io09_sel pad 9 full mux function select
[7:6] RW 2'h0 reserved
[5:0] RW 6'h0 r_func_io08_sel pad 8 full mux function select. not used. can delete
0x24 func_io3 register description
[31:30] RW 2'h0 reserved
[29:24] RW 6'h0 r_func_io15_sel pad 15 full mux function select
[23:22] RW 2'h0 reserved
[21:16] RW 6'h0 r_func_io14_sel pad 14 full mux function select
[15:14] RW 2'h0 reserved
[13:8] RW 6'h0 r_func_io13_sel pad 13 full mux function select
[7:6] RW 2'h0 reserved
[5:0] RW 6'h0 r_func_io12_sel pad 12 full mux function select
0x28 func_io4 register description
[31:30] RW 2'h0 reserved
[29:24] RW 6'h0 r_func_io19_sel pad 19 full mux function select
[23:22] RW 2'h0 reserved
[21:16] RW 6'h0 r func io18 sel pad 18 full mux function select
[15:14] RW 2'h0 reserved
[13:8] RW 6'h0 r_func_io17_sel pad 17 full mux function select
[7:6] RW 2'h0 reserved
[5:0] RW 6'h0 r_func_io16_sel pad 16 full mux function select
0x2c func_io5 register description
[31:30] RW 2'h0 reserved

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.

Rev: A

	1		<u></u>	T
[29:24]	RW	6'h0	r_func_io23_sel	pad 23 full mux function select
[23:22]	RW	2'h0	reserved	
[21:16]	RW	6'h0	r_func_io22_sel	pad 22 full mux function select
[15:14]	RW	2'h0	reserved	
[13:8]	RW	6'h0	r_func_io21_sel	pad 21 full mux function select
[7:6]	RW	2'h0	reserved	
[5:0]	RW	6'h0	r_func_io20_sel	pad 20 full mux function select
0x30			func_io6	register description
[31:30]	RW	2'h0	reserved	
[29:24]	RW	6'h0	r_func_io27sel	pad 27 full mux function select
[23:22]	RW	2'h0	reserved	
[21:16]	RW	6'h0	r_func_io26_sel	pad 26 full mux function select
[15:14]	RW	2'h0	reserved	
[13:8]	RW	6'h0	r_func_io25_sel	pad 25 full mux function select
[7:6]	RW	2'h0	reserved	
[5:0]	RW	6'h0	r_func_io24_sel	pad 24 full mux function select
0x34			func_io7	register description
[31:30]	RW	2'h0	reserved	71/
[29:24]	RW	6'h0	r_func_io31sel	pad 31 full mux function select
[23:22]	RW	2'h0	reserved	
[21:16]	RW	6'h0	r_func_io30_sel	pad 30 full mux function select
[15:14]	RW	2'h0	reserved	
[13:8]	RW	6'h0	r_func_io29_sel	pad 29 full mux function select
[7:6]	RW	2'h0	reserved	
[5:0]	RW	6'h0	r_func_io28_sel	pad 28 full mux function select
0x38			func_io8	register description
[31:22]	RW	10'h0	reserved	
[21:16]	RW	6'h0	r_func_io34_sel	pad 34 full mux function select
[15:14]	RW	2'h0	reserved	
[13:8]	RW	6'h0	r_func_io33_sel	pad 33 full mux function select
[7:6]	RW	2'h0	reserved	
[5:0]	RW	6'h0	r_func_io32_sel	pad 32 full mux function select
0x4C			key_scan_in_en	register description
[31:16]	RW	16'h0	reserved	
[15:0]	RW	16'h0	r_kscan_in_en	key scan in enable
0x50			key_scan_out_en	register description
[31:18]	RW	14'h0	reserved	
[17:0]	RW	18'h0	r_kscan_out_en	key scan out enable

Table 9: Detailed IOMUX register

The information contained herein is the exclusive property of QST, and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of OST.

Title: QMS7926 Datasheet

Rev: A

2.9.2 Register table

Physical IO PAD control registers:

Base address: 4000 F000

0xF008			IOCTL0
[31:30]	RW	2'd0	XA
			pull up/down control of pin 09
			00: floating, no pull up and pull down
[29:28]	RW	2'b0	01: weak pull up
			10: strong pull up
			11: pull down
			wake up polarity select of pin 09
[27]	RW	1'b0	0: active POSEDGE
			1: active NEGEDGE
[26:24]	RW	3'b110	P08 is used for test mode config pin
			pull up/down control of pin 07
			00: floating, no pull up and pull down
[23:22]	RW	2'b0	01: weak pull up
			10: strong pull up
			11: pull down
			wake up polarity select of pin 07
[21]	RW	1'b0	0: active POSEDGE
			1: active NEGEDGE
			pull up/down control of pin 06
			00: floating, no pull up and pull down
[20:19]	RW	2'b0	01: weak pull up
		· ·	10: strong pull up
			11: pull down
			wake up polarity select of pin 06
[18]	RW	1'b0	0: active POSEDGE
			1: active NEGEDGE
			pull up/down control of pin 05
			00: floating, no pull up and pull down
[17:16]	RW	2'b0	01: weak pull up
	A		10: strong pull up
TU?			11: pull down
			wake up polarity select of pin 05
[15]	RW	1'b0	0: active POSEDGE
			1: active NEGEDGE

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.

Document #: 13-52-18 **T**:

Title: QMS7926 Datasheet

Rev: A

	11 /1
	pull up/down control of pin 04
	00: floating, no pull up and pull down
00	01: weak pull up
	10: strong pull up
	11: pull down
	wake up polarity select of pin 04
00	0: active POSEDGE
	1: active NEGEDGE
	pull up/down control of pin 03
	00: floating, no pull up and pull down
o11	01: weak pull up
	10: strong pull up
	11: pull down
	wake up polarity select of pin 03
00	0: active POSEDGE
	1: active NEGEDGE
	pull up/down control of pin 02
	00: floating, no pull up and pull down
00	01: weak pull up
	10: strong pull up
	11: pull down
	wake up polarity select of pin 02
1'b0	0: active POSEDGE
	1: active NEGEDGE
	pull up/down control of pin 01
	00: floating, no pull up and pull down
2'b0	01: weak pull up
	10: strong pull up
	11: pull down
	wake up polarity select of pin 01
00	0: active POSEDGE
	1: active NEGEDGE
	pull up/down control of pin 00
	00: floating, no pull up and pull down
2'b0	01: weak pull up
	10: strong pull up
	11: pull down
1'b0	wake up polarity select of pin 00
	0: active POSEDGE
	00

Title: QMS7926 Datasheet

Rev: A

			1: active NEGEDGE
0xF00C			IOCTL1
[31:30]	RW	2'd0	
			pull up/down control of pin 19
			00: floating, no pull up and pull down
[29:28]	RW	2'b0	01: weak pull up
			10: strong pull up
			11: pull down
			wake up polarity select of pin 19
[27]	RW	1'b0	0: active POSEDGE
			1: active NEGEDGE
			pull up/down control of pin 18
			00: floating, no pull up and pull down
[26:25]	RW	2'b0	01: weak pull up
			10: strong pull up
			11: pull down
			wake up polarity select of pin 18
[24]	RW	1'b0	0: active POSEDGE
			1: active NEGEDGE
			pull up/down control of pin 17
			00: floating, no pull up and pull down
[23:22]	RW	2'b0	01: weak pull up
			10: strong pull up
			11: pull down
			wake up polarity select of pin 17
[21]	RW	1'b0	0: active POSEDGE
			1: active NEGEDGE
			pull up/down control of pin 16
			00: floating, no pull up and pull down
[20:19]	RW	2'b0	01: weak pull up
		7	10: strong pull up
			11: pull down
			wake up polarity select of pin 16
[18]	RW	1'b0	0: active POSEDGE
			1: active NEGEDGE
			pull up/down control of pin 15
[17.46]	DVA	2160	00: floating, no pull up and pull down
[17:16]	RW	2'b0	01: weak pull up
			10: strong pull up

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.

Document #: 13-52-18 **Title:** QM

Title: QMS7926 Datasheet

Rev: A

			11: pull down
			wake up polarity select of pin 15
[15]	RW	1'b0	0: active POSEDGE
[]			1: active NEGEDGE
			pull up/down control of pin 14
			00: floating, no pull up and pull down
[14:13]	RW	2'b0	01: weak pull up
[==0]	1		10: strong pull up
			11: pull down
			wake up polarity select of pin 14
[12]	RW	1'b0	0: active POSEDGE
			1: active NEGEDGE
			pull up/down control of pin 13
			00: floating, no pull up and pull down
[11:10]	RW	2'b0	01: weak pull up
			10: strong pull up
			11: pull down
			wake up polarity select of pin 13
[9]	RW	1'b0	0: active POSEDGE
			1: active NEGEDGE
			pull up/down control of pin 12
			00: floating, no pull up and pull down
[8:7]	RW	2'b0	01: weak pull up
			10: strong pull up
			11: pull down
			wake up polarity select of pin 12
[6]	RW	1'b0	0: active POSEDGE
			1: active NEGEDGE
			pull up/down control of pin 11
			00: floating, no pull up and pull down
[5:4]	RW	2'b0	01: weak pull up
			10: strong pull up
			11: pull down
			wake up polarity select of pin 11
[3]	RW	1'b0	0: active POSEDGE
			1: active NEGEDGE
			pull up/down control of pin 10
[2:1]	RW	2'b0	00: floating, no pull up and pull down
			01: weak pull up

Title: QMS7926 Datasheet

Rev: A

			10: strong pull up
			11: pull down
			wake up polarity select of pin 10
[0]	RW	1'b0	0: active POSEDGE
[0]	1	150	1: active NEGEDGE
			1. active NEGEDGE
0xF010			IOCTL2
[31:30]	RW	2'd0	IOCILE
[31.30]	1	2 40	pull up/down control of pin 29
			00: floating, no pull up and pull down
[29:28]	RW	2'b0	01: weak pull up
[23.20]	'``	2 50	10: strong pull up
			11: pull down
			wake up polarity select of pin 29
[27]	RW	1'b0	0: active POSEDGE
[27]	11.00	150	1: active NEGEDGE
			pull up/down control of pin 28
			00: floating, no pull up and pull down
[26:25]	RW	2'b0	01: weak pull up
[20.23]	11.00	2 50	10: strong pull up
			11: pull down
			wake up polarity select of pin 28
[24]	RW	1'b0	0: active POSEDGE
[,			1: active NEGEDGE
			pull up/down control of pin 27
			00: floating, no pull up and pull down
[23:22]	RW	2'b0	01: weak pull up
			10: strong pull up
			11: pull down
			wake up polarity select of pin 27
[21]	RW	1'b0	0: active POSEDGE
			1: active NEGEDGE
	7		pull up/down control of pin 26
			00: floating, no pull up and pull down
[20:19]	RW	2'b0	01: weak pull up
		2 50	10: strong pull up
			11: pull down
[40]	DIA	411.0	wake up polarity select of pin 26
[18]	RW	1'b0	0: active POSEDGE

Rev: A

			1: active NEGEDGE
			pull up/down control of pin 25
			00: floating, no pull up and pull down
[17:16]	RW	2'b11	01: weak pull up
			10: strong pull up
			11: pull down
			wake up polarity select of pin 25
[15]	RW	1'b0	0: active POSEDGE
,			1: active NEGEDGE
			pull up/down control of pin 24
			00: floating, no pull up and pull down
[14:13]	RW	2'b11	01: weak pull up
			10: strong pull up
			11: pull down
			wake up polarity select of pin 24
[12]	RW	1'b0	0: active POSEDGE
			1: active NEGEDGE
			pull up/down control of pin 23
			00: floating, no pull up and pull down
[11:10]	RW	2'b0	01: weak pull up
			10: strong pull up
			11: pull down
			wake up polarity select of pin 23
[9]	RW	1'b0	0: active POSEDGE
			1: active NEGEDGE
			pull up/down control of pin 22
			00: floating, no pull up and pull down
[8:7]	RW	2'b0	01: weak pull up
			10: strong pull up
			11: pull down
			wake up polarity select of pin 22
[6]	RW	1'b0	0: active POSEDGE
			1: active NEGEDGE
			pull up/down control of pin 21
)		00: floating, no pull up and pull down
[5:4]	RW	2'b0	01: weak pull up
			10: strong pull up
			11: pull down
[3]	RW	1'b0	wake up polarity select of pin 21

			0: active POSEDGE
			1: active NEGEDGE
			pull up/down control of pin 20
[2:1]		2'b0	00: floating, no pull up and pull down
	RW		01: weak pull up
			10: strong pull up
			11: pull down
			wake up polarity select of pin 20
[0]	RW	1'b0	0: active POSEDGE
			1: active NEGEDGE

Table 10: Physical IO PAD control registers

2.10 GPIO

The General Purpose I/Os are a type of peripheral that can be mapped to physical I/O pads and programmed by software. The flexible GPIO are organized as two PORTs. Among them, PortA has bi-direction 18 bit lines, e.g., GPIO_PORTA[17:0], while PortB has 17 bi-directional bit lines, e.g., PIO_PORTB[16:0]. With default setting, physical pads: P00-P17 are connected to PortA; Pads P18-34 are connected to PortB, when all GPIOs are enabled, as described in the IOMUX table in IOMUX section.

All PortA and PortB pins can be configured as bi-directional serial interface, by selecting as input or output direction, and their corresponding data can be either read from or written to registers. All PortA and PortB pins support wake-up, but only 18 PortA pins support interrupt. Also only PortA pins support debounce function.

Each GPIO pins can be pulled up to AVDD33 or pulled down to ground by adding pull up or pull down resistors to have default functions/states.

For more detailed info, please refer to "QMS7926 GPIO Application Notes", in software SDK document folder.

#	GPIO	Default MODE	Default IN_OUT	IRQ	Wakeup	ANA_IO
0	GPIO_P00	jtag_dout	OUT	٧	٧	
1	GPIO_P01	jtag_din	IN	٧	٧	
2	GPIO_P02	jtag_tm	IN	V	٧	
3	GPIO_P03	jtag_clk	IN	٧	٧	
4	GPIO_P04	GPIO	IN	٧	٧	
5	GPIO_P05	GPIO	IN	٧	٧	
6	GPIO_P06	GPIO	IN	٧	٧	

The information contained herein is the exclusive property of QST, and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of QST.

7	GPIO_P07	GPIO	IN	٧	٧	
8	TEST_MODE					
9	GPIO_P09	GPIO	IN	٧	٧	
10	GPIO_P10	GPIO	IN	٧	٧	
11	GPIO_P11	GPIO	IN	٧	٧	ADC_CH1N_P11
12	GPIO_P12	GPIO	IN	٧	٧	ADC_CH1P_P12
13	GPIO_P13	GPIO	IN	٧	٧	ADC_CH2N_P13
14	GPIO_P14	GPIO	IN	٧	٧	ADC_CH2P_P14
15	GPIO_P15	GPIO	IN	V	٧	ADC_CH3N_P15
16	GPIO_P16	XTALI(ANA)	ANA	٧	٧	
17	GPIO_P17	XTALO(ANA)	ANA	٧	V	
18	GPIO_P18	GPIO	IN		V	
19	GPIO_P19	GPIO	IN		٧	
20	GPIO_P20	GPIO	IN		٧	ADC_CH3P_P20
21	GPIO_P21	GPIO	IN		٧	
22	GPIO_P23	GPIO	IN		V	
23	GPIO_P25	GPIO	IN		٧	
24	GPIO_P26	GPIO	4N		٧	
25	GPIO_P28	GPIO	IN		٧	
26	GPIO_P31	GPIO	IN		٧	
27	GPIO_P32	GPIO	IN'		٧	
28	GPIO_P33	GPIO	OUT		٧	
29	GPIO_P34	GPIO	IN		٧	

Table 11: QMS7926 GPIO Application Notes

2.10.1 Register table

Blow table are the Registers related to GPIOs.

Base address: 0x4000_8000

OFFSET	TYPE	RESET	NAME	DESCRIPTION
0x00			gpio_swporta_dr	
[31:18]	RO	14'b0	Reserved	Reserved
[17:0]	RW	18'b0	Port A Data Register	Values written to this register are output on the
[17:0]	KVV	10 00	Port A Data Register	I/O signals for Port A
0x04			gpio_swporta_ddr	
[31:18]	RO	14'b0	Reserved	Reserved
				Values written to this register independently
[17:0]	RW	18'b0	Port A Data	control the direction of the corresponding data
[17:0]	I K VV	10 00	Direction Register	bit in Port A
				1'b0: Input

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.	60 / 148
--	----------

Title: QMS7926 Datasheet

Rev: A

				1'b1: Output
0x08			gpio_swporta_ctl	
[31:1]	RO	31'b0	Reserved	Reserved
[0]	RW	1'b0	Port A Data Source	The data and control source for a signal can come from either software or hardware 1'b0: Software mode
				1'b1: Hardware mode
0х0с			gpio_swportb_dr	1 b1. Hardware mode
[31:15]	RO	15'b0	Reserved	Reserved
[31.13]	KO	13 00	Reserveu	
[16:0]	RW	17'b0	Port B Data Register	Values written to this register are output on the I/O signals for Port B
0x10			gpio_swportb_ddr	
[31:15]	RO	15'b0	Reserved	Reserved
[16:0]	RW	17'b0	Port B Data Direction Register	Values written to this register independently control the direction of the corresponding data bit in Port B 1'b0: Input 1'b1: Output
0x14			gpio_swportb_ctl	
[31:1]	RO	31'b0	Reserved	Reserved
[0]	RW	1'b0	Port B Data Source	The data and control source for a signal can come from either software or hardware 1'b0: Software mode
				1'b1: Hardware mode
0x30			gpio_inten	1 bi. Haraware mode
[31:18]	RO	14'b0	Reserved	Reserved
[17:0]	RW	18'b0	Interrupt enable	Allows each bit of Port A to be configured for interrupts 1'b0: Configure Port A bit as normal GPIO signal
				1'b1: Configure Port A bit as interrupt
0x34	+		gpio_intmask	1 52. compare i orezione as interrupt
[31:18]	RO	14'b0	Reserved	Reserved
[01.10]	10	1 - 50	1,000,700	Controls whether an interrupt on Port A can
[17:0]	RW	18'b0	0 Interrupt mask	create an interrupt for the interrupt controller by not masking it
[17.0]		120,00		1'b0: Interrupt bits are unmasked
				1'b1: Mask interrupt
0x38	1		gpio_inttype_level	
[31:18]	RO	14'b0	Reserved	Reserved
[21,10]	I.O	T- 00	Nesci veu	Neserveu

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.

Document #: 13-52-18 **Title**

Title: QMS7926 Datasheet

Rev: A

				Controls the type of interrupt that can occur on
[47.0]	5,47	18'b0	Interrupt level	Port A
[17:0]	RW			1'b0: Level-sensitive
				1'b1: Edge-sensitive
0x3c			gpio_int_polarity	
[31:18]	RO	14'b0	Reserved	Reserved
				Controls the polarity of edge or level sensitivity
[47.0]	DVA	10150	lata an ala dita	that can occur on input of Port A
[17:0]	RW	18'b0	Interrupt polarity	1'b0: Active-low or falling-edge
				1'b1: Active-high or rising-edge
0x40			gpio_intstatus	
[31:18]	RO	14'b0	Reserved	Reserved
[17:0]	RO	18'b0	Interrupt status	Interrupt status of Port A
0x44			gpio_raw_intstatus	
[31:18]	RO	14'b0	Reserved	Reserved
[17:0]	RO	18'b0	Raw interrupt status	Raw interrupt of status of Port A
0x48			gpio_debounce	
[31:18]	RO	14'b0	Reserved	Reserved
	RW	18'b0	Debounce enable	Controls whether an external signal that is the
				source of an interrupt needs to be debounced to
[17:0]				remove any spurious glitches
				1'b0: No debounce
				1'b1: Enable debounce
0x4c			gpio_porta_eoi	
[31:18]	RO	14'b0	Reserved	Reserved
				Controls the clearing of edge type interrupts
[17:0]	wo	18'b0	Cloar interrupt	from Port A
[17.0]	WO	10 00	Clear interrupt	1'b0: No interrupt clear
				1'b1: Clear interrupt
0x50			gpio_ext_porta	
[31:18]	RO	14'b0	Reserved	Reserved
				When Port A is configured as Input, then reading
				this location reads the values on the signal. When
[17:0]	RO	18'b0	External Port A	the data direction of Port A is set as Output,
				reading this location reads the data register for
				Port A
x54			gpio_ext_portb	
[31:17]	RO	15'b0	Reserved	Reserved

Title: QMS7926 Datasheet

Rev: A

[16:0]	RO	17'b0	External Port B	When Port B is configured as Input, then reading this location reads the values on the signal. When the data direction of Port B is set as Output, reading this location reads the data register for Port B
0x60			gpio_ls_sync	
[31:1]	RO	31'b0	Reserved	Reserved
[0]	RW	1'b0	Synchronization level	Writing a 1 to this register results in all level- sensitive interrupts being synchronized to pclk_intr 1'b0: No synchronization to pclk_intr
0x64			ania id aada	1'b1: Synchronize to pclk_intr
	RO	16'b0	gpio_id_code Reserved	Reserved
[31:16]	NU	10 00	neserveu	This is a user-specified code that a system can
[15:0]	RO	16'b0	GPIO ID code	read. It can be used for chip identification, and so
0х6с			gpio_ver_id_code	
[31:0]	RO	32'b0	GPIO Component Version	ASCII value for each number in the version
0x74			gpio_config_reg1	
[31:21]	RO	11'b0	Reserved	Reserved
[20:16]	RO	5'b0x 0f	ENCODED_ID_WIDT H	The value of this register is equal to GPIO_ID_WIDTH-1
[15]	RO	1'b0	GPIO_ID	The value of this register is derived from the GPIO_ID configuration parameter
[13]	110			1'b0: Exclude
				1'b1: Include
[14]	RO	1'b0	ADD_ENCODED_PAR	The value of this register is derived from the GPIO_ADD_ENCODED_PARAMS configuration parameter
				1'b0: False
				1'b1: True
				The value of this register is derived from the
[13]	DO	1'b0	DEBOUNCE	GPIO_DEBOUNCE configuration parameter
[13]	RO	T 00	DEDOCINCE	1 aO. F.,a ,, a a
[13]	RO	1 50	BEBOONEE	1'b0: Exclude
[13]	KU	1 50	DESCONCE	1'b0: Exclude 1'b1: Include The value of this register is derived from the

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.

Title: QMS7926 Datasheet

Rev: A

				1'b1: Include
[11]	RO	1'b0	Reserved	Reserved
[10]	RO	1'b0	Reserved	Reserved
				The value of this register is derived from the
[0]	D.O.	411-0	LIM BODTO	GPIO_HW_PORTB configuration parameter
[9]	RO	1'b0	HW_PORTB	1'b0: Exclude
				1'b1: Include
				The value of this register is derived from the
[0]	RO	1'b0	LIM DODTA	GPIO_HW_PORTA configuration parameter
[8]	KO	1 00	HW_PORTA	1'b0: Exclude
				1'b1: Include
[7]	RO	1'b0	Reserved	Reserved
[6]	RO	1'b0	Reserved	Reserved
				The value of this register is derived from the
				GPIO_PORTB_SINGLE_CTL configuration
[5]	RO	1'b0	PORTB_SINGLE_CTL	parameter
				1'b0: False
				1'b1: True
		1'b0		The value of this register is derived from the
				GPIO_PORTA_SINGLE_CTL configuration
[4]	RO		PORTA_SINGLE_CTL	parameter
				1'b0: False
				1'b1: True
		2'b0x 2	NUM_PORTS	The value of this register is derived from the
				GPIO_NUM_PORT configuration parameter
[3:2]	RO			2'b00 1
				2'b01 2
				2'b10 3
				2'b11 4
				The value of this register is derived from the
		2'b0x 2		GPIO_APB_DATA_WIDTH configuration
[4 6]	DC			parameter
[1:0]	RO		APB_DATA_WIDTH	2'b00 8 bits
				2'b01 16 bits
				2'b10 32 bits
0v70			anio confia ros?	2'b11 Reserved
0x70	RO	22'b0	gpio_config_reg2 Reserved	Reserved
[31:10]	ΚU	22 00	nesei veu	reserveu

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.

Title: QMS7926 Datasheet

Rev: A

[9:5]	RO	5'b0x 0f	ENCODED_ID_PWID TH_B	The value of this register is equal to GPIO_PWIDTH_B-1
[4:0] RO	I RO I -	5'b0x	ENCODED_ID_PWID	The value of this register is equal to
		11	TH_A	GPIO_PWIDTH_A-1

Table 12: GPIOs registers

2.10.2 DC Characteristics

TA=25°C, VDD=3 V

PARAMETER	TEST CONDITIONS	Min.	TYP	Max.	Unit
Logic-0 input voltage				0.5	V
Logic-1 input voltage		2.4			V
Logic-0 input current	Input equals 0 V	-50		50	nA
Logic-1 input current	Input equals VDD	-50		50	nA
Logic-0 output voltage, 10-mA pins	Output load 10 mA			0.5	V
Logic-1 output voltage, 10-mA pins	Output load 10 mA	2.5			V

Table 13: DC Characteristics

3 Peripheral Blocks

3.1 2.4GHz Radio

The 2.4 GHz RF transceiver is designed to operate in the worldwide ISM frequency band at 2.4 to 2.4835 GHz. Radio modulation modes and configurable packet structure make the transceiver interoperable with *Bluetooth*® low energy (BLE) protocol implementations.

- General modulation format
 - FSK (configurable modulation index) with configurable Gaussian Filter Shaping
 - OQPSK with half-sine shaping
 - On-air data rates
 - 125kbps/250kbps/500kbps/1Mbps/2Mbps
- Transmitter with programmable output power of -20dBm to +10dBm, in 3dB steps
- RSSI function (1 dB resolution, ± 2 dB accuracy)
- Receiver sensitivity
 - -103dBm@125Kbps GFSK
 - -98dBm@500Kbps GFSK
 - -97dBm@1Mbps BLE
 - -94dBm@2Mbps BLE
- Embedded RF balun

The information contained herein is the exclusive property of QST, and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of QST.

asheet Rev: A

• Integrated frac-N synthesizer with phase modulation

3.2 Timer/Counters (TIMER)

The implementation can include a 24-bit SysTick system timer, that extends the functionality of both the processor and the NVIC. When present, the NVIC part of the extension provides:

- A 24-bit system timer (SysTick)
- Additional configurable priority SysTick interrupt.
- See the ARMv7-M ARM for more information.

General purpose timers are included in the design. This timer is Synopsys DW_apb_timer. With the input clock running at 4Mhz.

3.2.1 Register table

The timer related registers are listed below, and there are two sets of identical timers.

Base address: Timer setA: 4000 1000, timer setB: 4002 1000

OFFSET	TYPE	RESET	NAME	DESCRIPTION
0x00			Timer1LoadCount	
[31:24]	RO	8'b0	Reserved	Reserved
[22.0]	D\A/	24'b0	Timer1 Load Count	Value to be leaded into Timer1
[23:0]	RW	24 00	Register	Value to be loaded into Timer1
0x04			Timer1CurrentValue	
[31:24]	RO	8'b0	Reserved	Reserved
[23:0]	RO	24'b0	Timer1 Current Value	Current Value of Timer1
[23.0]	NO	24 00	Register	Current value of Timer1
0x08			Timer1ControlReg	
[31:3]	RO	29'b0	Reserved	Reserved
				Timer interrupt mask for Timer1
[2]	RW	1'b0	Timer Interrupt Mask	1'b0: not masked
				1'b1: masked
				Timer mode for Timer1
[1]	RW	1'b0	Timer Mode	1'b0: free-running mode
				1'b1: user-defined count mode
			.'b0 Timer Enable	Timer enable bit for Timer1
[0]	RW	V 1'b0		1'b0: disable
				1'b1: enable
0х0с			Timer1EOI	

The information contained herein is the exclusive property of QST, and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of OST.

Title: QMS7926 Datasheet

Rev: A

[31:1]	RO	31'b0	Reserved	Reserved	
[31.1]	NO	31 00	Reserved	Reading from this register returns all	
[0]	RO	1'b0	Timer1 End of-Interrupt	zeroes (0) and clears the interrupt from	
[O]	INO	1 50	Register	Timer1	
0x10			Timer1IntStatus	Timeri	
[31:1]	RO	31'b0	Reserved	Reserved	
			Timer1 Interrupt Status	The served	
[0]	RO	1'b0	Register	Contains the interrupt status for Timer1	
0x14			Timer2LoadCount		
[31:24]	RO	8'b0	Reserved	Reserved	
			Timer2 Load Count		
[23:0]	RW	24'b0	Register	Value to be loaded into Timer2	
0x18			Timer2CurrentValue		
[31:24]	RO	8'b0	Reserved	Reserved	
[22.0]	D0	2411-0	Timer2 Current Value	Constant Notes of Time Al	
[23:0]	RO	24'b0	Register	Current Value of TimerN	
0x1c			Timer2ControlReg		
[31:3]	RO	29'b0	Reserved	Reserved	
				Timer interrupt mask for Timer2	
[2]	RW	1'b0	Timer Interrupt Mask	1'b0: not masked	
				1'b1: masked	
				Timer mode for Timer2	
[1]	RW	1'b0	Timer Mode	1'b0: free-running mode	
				1'b1: user-defined count mode	
				Timer enable bit for Timer2	
[0]	RW	1'b0	Timer Enable	1'b0: disable	
				1'b1: enable	
0x20			Timer2EOI		
[31:1]	RO	31'b0	Reserved	Reserved	
			Timer2 End of-Interrupt	Reading from this register returns all	
[0]	RO	1'b0	Register	zeroes (0) and clears the interrupt from	
		1		Timer2	
0x24			Timer2IntStatus		
[31:1]	RO	31'b0	Reserved	Reserved	
[0]	RO	1'b0	Timer2 Interrupt Status Register	Contains the interrupt status for Timer2	
0x28			Timer3LoadCount		
[31:24]	RO	8'b0	Reserved	Reserved	
[34.47]	1110	0.00	I NESCI VEG	110001400	

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.

Document #: 13-52-18 **Tit**

Title: QMS7926 Datasheet

Rev: A

[23:0]	RW	24'b0	Timer3 Load Count Register	Value to be loaded into Timer3	
0x2c			Timer3CurrentValue		
[31:24]	RO	8'b0	Reserved	Reserved	
[23:0]	RO	24'b0	Timer3 Current Value Register	Current Value of TimerN	
0x30			Timer3ControlReg		
[31:3]	RO	29'b0	Reserved	Reserved	
				Timer interrupt mask for Timer3	
[2]	RW	1'b0	Timer Interrupt Mask	1'b0: not masked	
				1'b1: masked	
				Timer mode for Timer3	
[1]	RW	1'b0	Timer Mode	1'b0: free-running mode	
				1'b1: user-defined count mode	
				Timer enable bit for Timer3	
[0]	RW	1'b0	Timer Enable	1'b0: disable	
				1'b1: enable	
0x34			Timer3EOI		
[31:1]	RO	31'b0	Reserved	Reserved	
[0]	RO	1'b0	Timer3 End of-Interrupt Register	Reading from this register returns all zeroes (0) and clears the interrupt from Timer3	
0x38			Timer3IntStatus		
[31:1]	RO	31'b0	Reserved	Reserved	
[0]	RO	1'b0	Timer3 Interrupt Status Register	Contains the interrupt status for Timer3	
0x3c			Timer4LoadCount		
[31:24]	RO	8'b0	Reserved	Reserved	
[23:0]	RW	24'b0	Timer4 Load Count Register	Value to be loaded into Timer4	
0x40			Timer4CurrentValue		
[31:24]	RO	8'b0	Reserved	Reserved	
[23:0]	RO.	24'b0	Timer4 Current Value	Current Value of Timer4	
	RO	24 00	Register	Carrent value of filler	
0x44			Timer4ControlReg		
[31:3]	RO	29'b0	Reserved	Reserved	
				Timer interrupt mask for Timer4	
[2]	RW	W 1'b0	Timer Interrupt Mask	1'b0: not masked	
				1'b1: masked	

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.

Title: QMS7926 Datasheet

Rev: A

		<u> </u>		Timer made for TimerA
[4]	DVA	1'b0		Timer mode for Timer4
[1]	RW		Timer Mode	1'b0: free-running mode
				1'b1: user-defined count mode
				Timer enable bit for Timer4
[0]	RW	1'b0	Timer Enable	1'b0: disable
				1'b1: enable
0x48			Timer4EOI	
[31:1]	RO	31'b0	Reserved	Reserved
			Timer4 End of-Interrupt	Reading from this register returns all
[0]	RO	1'b0	<u>'</u>	zeroes (0) and clears the interrupt from
			Register	Timer4
0x4c			Timer4IntStatus	
[31:1]	RO	31'b0	Reserved	Reserved
[0]	DO.	1'b0	Timer4 Interrupt Status	Contains the interment status for Timera
[0]	RO	1 00	Register	Contains the interrupt status for Timer4
0xa0			TimersIntStatus	
[31:4]	RO	28'b0	Reserved	Reserved
		411.0	Timers Interrupt Status Register	Contains the interrupt status of all timers
				in the component
[0.0]				0: either timer intr or timer intr n is not
[3:0]	RO	4'b0		active after masking
				1: either timer intr or timer intr n is
				active after masking
0xa4			TimersEOI	
[31:4]	RO	28'b0	Reserved	Reserved
			Timers End of-Interrupt	Reading this register returns all zeroes (0)
[3:0]	RO	4'b0	Register	and clears all active interrupts
0xa8			TimersRawIntStatus	
[31:4]	RO	28'b0	Reserved	Reserved
[31.1]	1.0	20 00	Neserveu .	The register contains the unmasked
				interrupt status of all timers in the
				component
[3:0]	RO	4'b0	Timers Raw Interrupt	0: either timer intr or timer intr n is not
[3.0]	KO	4 50	Status Register	active prior to masking
				1: either timer intr or timer intr n is
				active prior to masking
Over			TimorcDoudetCtotus	active prior to masking
Охас			Timers Component	Current revision number of the
[31:0]	RO	32'b0	Timers Component	Current revision number of the
_		02.00	Version	DW_apb_timers component

Table 14: Timer registers

The information contained herein is the exclusive property of QST, and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of QST.

3.3 Real Time Counter (RTC)

The Real Time Counter (RTC) module provides a generic, low power timer on the low-frequency clock source (LFCLK). The RTC features a 24 bit COUNTER, 12 bit (1/X) prescaler, capture/compare registers, and a tick event generator for low power, tickless RTOS implementation.

3.3.1 Register table

RTC related registers are listed below.

Base address: 4000_F000

0xF024	_		RTCCTL
[31:24]	RW	8'h0	
			Counter overflow event enable.
[23]	RW	1'b0	1'b0: disable
			1'b1: enable
			Comparator 2 event enable.
[22]	RW	1'b0	1'b0: disable
			1'b1: enable
			Comparator 1 event enable.
[21]	RW	1'b0	1'b0: disable
			1'b1: enable
		1'b0	Comparator 0 event enable.
[20]	RW		1'b0: disable
			1'b1: enable
		1'b0	RTC tick event enable.
[19]	RW		1'b0: disable
			1'b1: enable
		1'b0	Counter overflow interrupt enable.
[18]	RW		1'b0: disable
			1'b1: enable
			Comparator 2 interrupt enable.
[17]	RW	1'b0	1'b0: disable
			1'b1: enable
			Comparator 1 interrupt enable.
[16]	RW	1'b0	1'b0: disable
			1'b1: enable
			Comparator 0 interrupt enable.
[15]	RW	1'b0	1'b0: disable
			1'b1: enable

The information contained herein is the exclusive property of QST, and shall not be distributed,	
reproduced, or disclosed in whole or in part without prior written permission of OST.	
reproduced, or discressed in whose of in part without prior written permission of QST.	

₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩	Document #:	13-52-18	Title: QMS7926 Datasheet	Rev: A
--	-------------	----------	--------------------------	--------

			RTC tick interrupt enable.
[14]	RW	1'b0	1'b0: disable
			1'b1: enable
			12bit prescaler for RTC counter frequency
[13:2]	RW	12'h0	(32768/(PRESCALER+1)).Can be written only when
			RTC is stopped.
[4]	DVA	411-0	RTC counter clear bit. Write 1'b1 will clear RTC
[1]	RW	1'b0	counter and after one clock this bit will return to 1'b0.
			RTC run/stop control.
[0]	RW	1'b0	1'b0: stop
			1'b1: run
0xF028			RTCCNT
[31:24]	RO	8'h0	
			Writing32'h5A5AA5A5 can trigger the overflow task
			that sets the RTC counter value to 24'hFFFFF0 to allow
[23:0]	RO	24'h0	SW test of the overflow condition.
			Reading can read the value of RTC counter (low 24
			bits).
0xF02C			RTCCC0
[31:24]	RW	8'h0	
[23:0]	RW	24'h0	Compare value of comparator 0
0xF030			RTCCC1
[31:24]	RW	8'h0	
[23:0]	RW	24'h0	Compare value of comparator 1
0xF034			RTCCC2
[31:24]	RW	8'h0	
[23:0]	RW	24'h0	Compare value of comparator 2
0xF038			RTCFLAG
[31:4]	R	28'h0	
[3]	RO	1'b0	Overflow result flag.
[2]	RO	1'b0	Compare result flag of comparator 2.
[1]	RO	1'b0	Compare result flag of comparator 1.
[0]	RO	1'b0	Compare result flag of comparator 0.

Table 15: RTC registers

3.4 AES-ECB Encryption (ECB)

The ECB encryption block supports 128 bit AES encryption. It can be used for a range of cryptographic functions like hash generation, digital signatures, and keystream generation for data encryption/decryption.

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.	71 / 148
--	----------

Title: QMS7926 Datasheet

Rev: A

3.4.1 Register table

AES-ECB related registers are listed below.

Base address:4004_0000

OFFSET	TYPE	RESET	NAME	DESCRIPTION
0x00				AES layer enable register
[31:1]	_	31'b0	reserved	
[0]	RW	1'b0	Enable	Setting this bit to "1" will enable AES to do TX/RX
0x04				AES layer control register
[31:17]	_	15'b0	reserved	
[16]	RW	1'b0	FIFO out/in (PDU)	if pdu is little-endian set 0;if pdu is big-endian set 1
[15:12]	_	4'b0	reserved	
				[11]:data out:
				if it is little-endian set 0
				if it is big-endian set 1
			Enginne revert	[10]:xor data :1
[11.0]	D\A/	4160		[9]: key :
[11:8]	RW	4'b0		if it is little-endian set 0
				if it is big-endian set 1
				[8]:data
				if it is little-endian set 0
				if it is big-endian set 1
[7:5]	_	3'b0	reserved	
[4]	RW	1'b0	AES_single mode	AES single mode
[3]	RW	1'b0	Code_mode	Encript /decript
[2:0]	_	3'b0	reserved	
0x08				AES reserved register
[31:0]	_	32'b0	reserved	
0x0c				AES plen & aad register
[31:16]	_	16'b0	reserved	
[15:8]	RW	8'b0	plen	Packet length
[7:0]	RW	8'b0	aad	aad
0x10				AES interrupt mask register
[31:4]	_	28'b0	reserved	
[3:0]	RW	4'b0	AES interrupt	[0]: encript done;[1]: decript failed;[2[: decript
[3.0]	17.00		enable	ok;[3] single mode done
0x14				AES interrupt status register
[31:4]	_	28'b0	reserved	

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.

Document #: 13-52-18 **Title:** QMS7926 Datasheet **Rev: A**

[2, 0]		411-0	AES interrupt	[0]: encript done;[1]: decript failed;[2[: decript	
[3:0]	RO	4'b0	status	ok;[3] single mode done	
0x18				AES reserved register	
[31:0]	_	32'b0	reserved		
0x1C				AES reserved register	
[31:0]	_	32'b0	reserved		
0x20				AES key0 register	
[31:0]	RW	32'b0	Key0[31:0]	Key[31:0]	
0x24				AES key1 register	
[31:0]	RW	32'b0	Key1[31:0]	Key[63:32]	
0x28				AES key2 register	
[31:0]	RW	32'b0	Key2[31:0]	Key[95:64]	
0x2C				AES key3 register	
[31:0]	RW	32'b0	Key3[31:0]	Key[127:96]	
0x30				AES nonce0 register	
[31:0]	RW	32'b0	Nonce0[31:0]	Single mode:data_in[31;0];ECB-CCM:Nonce[31:0]	
0x34				AES nonce1 register	
[31:0]	RW	32'b0	Nonce1[31:0]	Single mode:data_in[31;0];ECB-CCM:Nonce[63:32]	
0x38				AES nonce2 register	
[31:0]	RW	32'b0	Nonce2[31:0]	Single mode:data_in[31;0];ECB-CCM:Nonce[95:64]	
0x3C				AES nonce3 register	
[31:0]	RW	32'b0	Nonce3[31:0]	Single mode:data_in[31;0];ECB-	
[51.0]	NVV	32 00	Nonces[51.0]	CCM:Nonce[127:96]	
0x50				AES data out 0(single mode) register	
[31:0]	RO	32'b0	Data_o0[31:0]	Data_out[31:0]	
0x54				AES data out 1(single mode) register	
[31:0]	RO	32'b0	Data_o1[31:0]	Data_out[63:32]	
0x58				AES data out 2(single mode) register	
[31:0]	RO	32'b0	Data_o2[31:0]	Data_out[95:64]	
0x5C				AES data out 3(single mode) register	
[31:0]	RO	32'b0	Data_o3[31:0]	Data_out[127:96]	
0x100				AES memory (0x0100~0x01FC)	
[31:0]	RW	32'b0	memory write	Writing offset address 0x100~0x1FC will write data	
[31.0]	11.00	32 00	memory write	into AES memory	

Table 16: AES-ECB registers

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.

Document #: 13-52-18 **Ti**

Title: QMS7926 Datasheet

Rev: A

3.5 Random Number Generator (RNG)

The Random Number Generator (RNG) generates true non-deterministic random numbers based on internal thermal noise. These random numbers are suitable for cryptographic purposes. The RNG does not require a seed value.

3.6 Watchdog Timer (WDT)

A count down watchdog timer using the low-frequency clock source (LFCLK) offers configurable and robust protection against application lock-up. The watchdog can be paused during long CPU sleep periods for low power applications and when the debugger has halted the CPU.

3.7 SPI (SPI)

The SPI interface supports 3 serial synchronous protocols which are SPI, SSP and Microwire serial protocols. SPI wrapper contains one SPI master and one SPI slave. They are logically exclusive. Only one block is alive at a time. The operation mode for master mode and slave mode is controlled by PERI_MASTER_SELECT Register in COM block.

bit	Reset value	Definition
1	0	SPI1 is master mode when set
0	0	SPIO is master mode when set

Table 17: PERI_MASTER_SELECT Register bit definition (base address = 0x4000_302C)

3.7.1 Register table

SPIO and SPI1 configuration registers are listed below.

Base address: SPI0: 4000_6000; SPI1: 4000_7000

OFFSET	TYPE	RESET	NAME	DESCRIPTION
0x00			CTRLR0	
[31:16]	RO	16'b0	Reserved	Reserved
[15:12]	RW	4'b0	CFS	Control Frame Size. Selects the length of the control word for the Microwire frame format
[11]	RW	1'b0	SRL	Shift Register Loop. Used for testing purposes only. When internally active, connects the transmit shift register output to the receive shift register input 1'b0: Normal Mode Operation 1'b1: Test Mode Operation
[10]	RW	1'b0	SLV_OE	Slave Output Enable

The information contained herein is the exclusive property of QST, and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of QST.

Title: QMS7926 Datasheet

Rev: A

	<u> </u>	T		411.0.01
				1'b0: Slave txd is enabled
				1'b1: Slave txd is disabled
				Transfer Mode. Selects the mode of transfer
				for serial communication.
[9:8]	RW	2'b0	TMOD	2'b00: Transmit & Receive
[3.6]	IVV	2 50	TIVIOD	2'b01: Transmit Only
				2'b10: Receive Only
				2'b11: EEPROM Read
				Serial Clock Polarity. Valid when the frame
				format (FRF) is set to Motorola SPI. Used to
[7]	RW	1'b0	SCPOL	select the polarity of the inactive serial clock
				1'b0: Inactive state of serial clock is low
				1'b1: Inactive state of serial clock is high
				Serial Clock Phase. Valid when the frame
				format (FRF) is set to Motorola SPI. The serial
				clock phase selects the relationship of the
503				serial clock with the slave select signal
[6]	RW	1'b0	SCPH	1'b0: Serial clock toggles in middle of first
				data bit
				1'b1: Serial clock toggles at start of first data
				bit
				Frame Format. Selects which serial protocol
				transfers the data
				2'b00: Motorola SPI
[5:4]	RW	2'b0	FRF	2'b01: Texas Instruments SSP
				2'b10: National Semiconductors Microwire
				2'b11: Reserved
				Data Frame Size. Selects the data frame
[3:0]	RW	4'b0x7	DFS	length
			_	DW_apb_ssi is configured as a master
0x04			CTRLR1	device
[31:16]	RO	16'b0	Reserved	Reserved
[15:0]	RW	16'b0	NDF	Number of Data Frames
0x08			SSIENR	
[31:1]	RO	31'b0	Reserved	Reserved
J	1.0			This register enables and disables the
				DW apb ssi
[0]	RW	1'b0	SSI_EN	1'b0: disable
				1'b1: enable
0х0с		1	MWCR	I DI. CHADIC
JAUC			ITI VV CIN	

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.

Document #: 13-52-18 **Title:** QMS7926 Da

Title: QMS7926 Datasheet Rev: A

[31:3]	RO	29'b0	Reserved	Reserved
				Microwire Handshaking
[2]	RW	1'b0	MHS	1'b0: disabled
				1'b1: enabled
				Microwire Control. Defines the direction of
[1]	RW	1'b0	MDD	the data word when the Microwire serial
				protocol is used
				Microwire Transfer Mode. Defines whether
				the Microwire transfer is sequential or non-
[0]	RW	1'b0	MWMOD	sequential
				1'b0: non-sequential transfer
				1'b1: sequential transfer
0x10			SER	
[31:1]	RO	31'b0	Reserved	Reserved
				Slave Select Enable Flag
[0]	RW	1'b0	SER	1'b0: non-sequential transfer
				1'b1: sequential transfer
0x14			BAUDR	
[31:16]	RO	16'b0	Reserved	Reserved
[15:0]	RW	16'b0	SCKDV	SSI Clock Divider
0x18			TXFTLR	
[31:3]	RO	29'b0	Reserved	Reserved
				Transmit FIFO Threshold. Controls the level
[2:0]	RW	3'b0	TFT	of entries (or below) at which the transmit
				FIFO controller triggers an interrupt
0x1c			RXFTLR	
[31:3]	RO	29'b0	Reserved	Reserved
				Receive FIFO Threshold. Controls the level of
[2:0]	RW	3'b0	RFT	entries (or above) at which the receive FIFO
				controller triggers an interrupt
0x20			TXFLR	
[31:4]	RO	28'b0	Reserved	Reserved
[3:0]	RO	4'b0	TXTFL	Transmit FIFO Level. Contains the number of
	1.0	7 50	IXIIL	valid data entries in the transmit FIFO
0x24			RXFLR	
[31:4]	RO	28'b0	Reserved	Reserved
[3:0]	RO	4'b0	RXTFL	Receive FIFO Level. Contains the number of
	1.0	7 50	IXIIL	valid data entries in the receive FIFO
0x28			SR	

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.

Document #: 13-52-18 **Ti**

Title: QMS7926 Datasheet

Rev: A

[31:7]	RO	25'b0	Reserved	Reserved
				Data Collision Error
[6]	RO	1'b0	DCOL	1'b0: No error
				1'b1: Transmit data collision error
				Transmission Error. Set if the transmit FIFO is
r=1		411.0		empty when a transfer is started
[5]	RO	1'b0	TXE	1'b0: No error
				1'b1: Transmission error
				Receive FIFO Full
[4]	RO	1'b0	RFF	1'b0: not full
				1'b1: full
				Receive FIFO Not Empty
[3]	RO	1'b0	RFNE	1'b0: empty
				1'b1: not empty
				Transmit FIFO Empty
[2]	RO	1'b1	TFE	1'b0: not empty
				1'b1: empty
				Transmit FIFO Not Full
[1]	RO	1'b1	TFNF	1'b0: full
				1'b1: not full
				SSI Busy Flag
[0]	RO	1'b0	BUSY	1'b0: DW_apb_ssi is idle or disabled
[0]	NO	1 50	BU31	1'b1: DW_apb_ssi is actively transferring
				data
0x2c			IMR	
[31:6]	RO	26'b0	Reserved	Reserved
				Multi-Master Contention Interrupt Mask
[5]	RW	1'b1	MSTIM	1'b0: masked
				1'b1: not masked
				Receive FIFO Full Interrupt Mask
[4]	RW	1'b1	RXFIM	1'b0: masked
				1'b1: not masked
				Receive FIFO Overflow Interrupt Mask
[3]	RW	1'b1	RXOIM	1'b0: masked
				1'b1: not masked
				Receive FIFO Underflow Interrupt Mask
[2]	RW	1'b1	RXUIM	1'b0: masked
				1'b1: not masked
[1]	RW	1'b1	TXOIM	Transmit FIFO Overflow Interrupt Mask

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.

Title: QMS7926 Datasheet

Rev: A

			T	411.0
				1'b0: masked
				1'b1: not masked
				Transmit FIFO Empty Interrupt Mask
[0]	RW	1'b1	TXEIM	1'b0: masked
				1'b1: not masked
0x30			ISR	
[31:6]	RO	26'b0	Reserved	Reserved
				Multi-Master Contention Interrupt Status
[5]	RO	1'b0	MSTIS	1'b0: not active
				1'b1: active
				Receive FIFO Full Interrupt Status
[4]	RO	1'b0	RXFIS	1'b0: not active
				1'b1: active
				Receive FIFO Overflow Interrupt Status
[3]	RO	1'b0	RXOIS	1'b0: not active
				1'b1: active
				Receive FIFO Underflow Interrupt Status
[2]	RO	1'b0	RXUIS	1'b0: not active
[-]				1'b1: active
				Transmit FIFO Overflow Interrupt Status
[1]	RO	1'b0	TXOIS	1'b0: not active
[1]				1'b1: active
				Transmit FIFO Empty Interrupt Status
[0]	RO	1'b0	TXEIS	1'b0: not active
				1'b1: active
0x34			RISR	
	RO	26'b0	Reserved	Reserved
[01:0]	1.0	2000	THE SETTER	Multi-Master Contention Raw Interrupt
				Status
[5]	RO	1'b0	MSTIR	1'b0: not active
				1'b1: active
				Receive FIFO Full Raw Interrupt Status
[4]	RO	1'b0	RXFIR	1'b0: not active
[יין	1.0	1 50	TOXI IIX	1'b1: active
				Receive FIFO Overflow Raw Interrupt Status
[3]	RO	1'b0	RXOIR	1'b0: not active
[3] [2] [1] [0] Ox34 [31:6] [5] [4] [3]	1.0	1 00	NAUIK	1'b1: active
				Receive FIFO Underflow Raw Interrupt Status
[2]	RO	1'b0	RXUIR	·
	1	1		1'b0: not active

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.

Document #: 13-52-18 **Title:** QMS7926 Datasheet **Rev: A**

			1	411.411
				1'b1: active
543				Transmit FIFO Overflow Raw Interrupt Status
[1]	RO	1'b0	TXOIR	1'b0: not active
				1'b1: active
				Transmit FIFO Empty Raw Interrupt Status
[0]	RO	1'b0	TXEIR	1'b0: not active
				1'b1: active
0x38			TXOICR	
[31:1]	RO	31'b0	Reserved	Reserved
[0]	RO	1'b0	TXOICR	Clear Transmit FIFO Overflow Interrupt
0x3c			RXOICR	
[31:1]	RO	31'b0	Reserved	Reserved
[0]	RO	1'b0	RXOICR	Clear Receive FIFO Overflow Interrupt
0x40			RXUICR	
[31:1]	RO	31'b0	Reserved	Reserved
[0]	RO	1'b0	RXUICR	Clear Receive FIFO Underflow Interrupt
0x44			MSTICR	
[31:1]	RO	31'b0	Reserved	Reserved
[0]	RO	1'b0	MSTICR	Clear Multi-Master Contention Interrupt
0x48			ICR	
[31:1]	RO	31'b0	Reserved	Reserved
[0]	RO	1'b0	ICR	Clear Interrupts
0x4c			DMACR	·
[31:2]	RO	30'b0	Reserved	Reserved
				Transmit DMA Enable. This bit
				enables/disables the transmit FIFO DMA
[1]	RW	1'b0	TDMAE	channel
-				1'b0: disable
				1'b1: enable
				Receive DMA Enable. This bit
				enables/disables the receive FIFO DMA
[0]	RW	1'b0	RDMAE	channel
[-]				1'b0: disable
				1'b1: enable
0x50			DMATDLR	
[31:3]	RO	29'b0	Reserved	Reserved
[2:0]	RW	3'b0	DMATDL	Transmit Data Level
	+	+		
0x54			DMARDLR	

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.

Document #: 13-52-18 **Title:** QMS7926 Datasheet **Rev: A**

[2:0]	RW	3'b0	DMARDL	Receive Data Level
0x58			IDR	
[31:0]	RO	32'b0	IDCODE	Identification Code
0x5c			SSI_COMP_VERSION	
[31:0]	RO	32'b0	SSI COMP VERSION	Contains the hex representation of the
[31.0]	NO	32 00	331_COIVIP_VERSION	Synopsys component version
0x60~0x9c			DR	
[31:16]	RO	16'b0	Reserved	Reserved
				Data Register
[15:0]	RW	16'b0	DR	Read: Receive FIFO buffer
				Write: Transmit FIFO buffer
0xf4			RSVD_0	
[31:0]	RW	32'b0	Reserved	Reserved location for future use
0xf8			RSVD_1	
[31:0]	RW	32'b0	Reserved	Reserved location for future use
0xfc			RX_SAMPLE_DLY	
[31:8]	RO	24'b0	Reserved	Reserved
				Receive Data (rxd) Sample Delay. This
[7:0]	RW	8'b0	RSD	register is used to delay the sample of the
				rxd input signal

Table 18: SPIO and SPI1 configuration registers

3.8 I2C (I2c0, I2c1 Two Independent Instances)

This I2C block support 100Khz, and 400Khz modes. It also supports 7-bit address and 10-bit address. It has built-in configurable spike suppression function for both lines.

3.8.1 Register table

I2C registers are listed below.

Base address: I2CO: 4000 5000, I2C1: 4000 5800

OFFSET	TYPE	RESET	NAME	DESCRIPTION
0x00			I2C Control Register	
[31:7]	RO	25'b0	Reserved	Reserved
[6]	RW	1'b0	IC_SLAVE_DISABLE	This bit controls whether I2C has its slave disabled 1'b0: slave is enabled 1'b1: slave is disabled
[5]	RW	1'b1	IC_RESTART_EN	Determines whether RESTART conditions may be sent when acting

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.	80 / 148
--	----------

Document #: 13-52-18 **Title:** QMS7926 Datasheet

Rev: A

	1			
				as a master
				1'b0: disable
				1'b1: enable
				Controls whether the DW_apb_i2c
				starts its transfers in 7- or 10-bit
[4]	RW	1'b1	IC 10BITADDR MASTER	addressing mode when acting as a
[]	'``		TE_TOBITATION_WINGTER	master
				1'b0: 7-bit addressing
				1'b1: 10-bit addressing
				When acting as a slave, this bit
				controls whether the DW_apb_i2c
[3]	RW	1'b1	IC_10BITADDR_SLAVE	responds to 7- or 10-bit addresses
				1'b0: 7-bit addressing
				1'b1: 10-bit addressing
				These bits control at which speed
				the DW_apb_i2c operates
[2:1]	RW	2'b11	SPEED	2'b01: standard mode
				2'b10: fast mode
				2'b11: high speed mode
				This bit controls whether the
[0]	RW	1'b0	MASTER_MODE	DW_apb_i2c master is enabled
[0]				1'b0: enable
				1'b1: disable
0x04			I2C Target Address Register	
[31:13]	RO	19'b0	Reserved	Reserved
				This bit controls whether the
				DW_apb_i2c starts its transfers in
		411.4		7-or 10-bit addressing mode when
[12]	RW	1'b1	IC_10BITADDR_MASTER	acting as a master
				1'b0: 7-bit addressing
				1'b1: 10-bit addressing
				This bit indicates whether software
				performs a General Call or START
[11]	RW			BYTE command
		1'b0	SPECIAL	1'b0: ignore bit 10 GC OR START
'			-	and use IC TAR normally
				1'b1: perform special I2C command
				as specified in GC OR START bit
				If bit 11 (SPECIAL) is set to 1, then
[10]	RW	1'b0	GC_OR_START	this bit indicates whether a General
	1			Timo ore marcates which it a deficial

The information contained herein is the exclusive property of QST, and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of QST.

Document #: 13-52-18 **Ti**

Title: QMS7926 Datasheet

Rev: A

[9:0] 0x08 [31:10]	RW RO	10'b0x055 22'b0 10'b0x055	IC_TAR IC_SAR Reserved IC_SAR	Call or START byte command is to be performed by the DW_apb_i2c 1'b0: General Call Address 1'b1: START BYTE This is the target address for any master transaction Reserved The IC_SAR holds the slave address when the I2C is operating as a slave.
			_	For 7-bit addressing, only IC_SAR[6:0] is used
0х0с			IC_HS_MADDR	
[31:3]	RO	29'b0	Reserved	Reserved
[2:0]	RW	3'b1	IC_HS_MAR	This bit field holds the value of the I2C HS mode master code
0x10			IC_DATA_CMD	
[31:11]	RO	21'b0	Reserved	Reserved
[10]	wo	1'b0	RESTART	This bit controls whether a RESTART is issued before the byte is sent or received. This bit is available only if IC_EMPTYFIFO_HOLD_MASTER_EN is configured to 1
[9]	wo	1'b0	STOP	This bit controls whether a STOP is issued after the byte is sent or received. This bit is available only if IC_EMPTYFIFO_HOLD_MASTER_EN is configured to 1
[8]	WO	1'b0	CMD	This bit controls whether a read or a write is performed 1'b0: Read 1'b1: Write
[7:0]	RW	8'b0	DAT	This register contains the data to be transmitted or received on the I2C bus
0x14			IC SS SCL HCNT	
[31:16]	RO	16'b0	Reserved	Reserved
[15:0]	RW	16'b0	IC_SS_SCL_HCNT	This register must be set before any I2C bus transaction can take place

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.

Document #: 13-52-18 **Title:** QMS7926 Datasheet

Rev: A

	T			
				to ensure proper I/O timing. This
				register sets the SCL clock high-
				period count for standard speed
0x18			IC_SS_SCL_LCNT	
[31:16]	RO	16'b0	Reserved	Reserved
				This register must be set before any
				I2C bus transaction can take place
[15:0]	RW	16'b0	IC_SS_SCL_LCNT	to ensure proper I/O timing. This
				register sets the SCL clock low
				period count for standard speed
0x1c			IC_FS_SCL_HCNT	
[31:16]	RO	16'b0	Reserved	Reserved
				This register must be set before any
				I2C bus transaction can take place
[15:0]	RW	16'b0	IC FS SCL HCNT	to ensure proper I/O timing. This
				register sets the SCL clock high-
				period count for fast speed
0x20			IC_SS_SCL_LCNT	
[31:16]	RO	16'b0	Reserved	Reserved
				This register must be set before any
				I2C bus transaction can take place
[15:0]	RW	16'b0	IC FS SCL LCNT	to ensure proper I/O timing. This
				register sets the SCL clock low-
				period count for fast speed
0x24			IC_HS_SCL_HCNT	
[31:16]	RO	16'b0	Reserved	Reserved
				This register must be set before any
				I2C bus transaction can take place
[15:0]	RW	16'b0	IC HS SCL HCNT	to ensure proper I/O timing. This
				register sets the SCL clock high
				period count for high speed
0x28			IC_HS_SCL_LCNT	
[31:16]	RO	16'b0	Reserved	Reserved
<u> </u>				This register must be set before any
				I2C bus transaction can take place
[15:0]	RW	16'b0	IC HS SCL LCNT	to ensure proper I/O timing. This
				register sets the SCL clock low
				period count for high speed
0x2c		1	IC_INTR_STAT	,
[31:12]	RO	20'b0	Reserved	Reserved
[]		1 -0 20		

The information contained herein is the exclusive property of QST, and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of QST.

Document #: 13-52-18 **Title:** QMS7926 Datasheet

Rev: A

	1	1		
54.63		411.0		Set only when a General Call
[11]	RO	1'b0	R_GEN_CALL	address is received and it is
				acknowledged
				Indicates whether a START or
[10]	RO	1'b0	R_START_DET	RESTART condition has occurred on
				the I2C interface
[9]	RO	1'b0	R_STOP_DET	Indicates whether a STOP condition
[2]	11.0	1 50	11_5101_511	has occurred on the I2C interface
				This bit captures DW_apb_i2c
[8]	RO	1'b0	R_ACTIVITY	activity and stays set until it is
				cleared
				When the DW_apb_i2c is acting as
[7]	RO	1'b0	D DY DONE	a slave-transmitter, this bit is set to
[7]	NO	1 00	R_RX_DONE	1 if the master does not
				acknowledge a transmitted byte
				This bit indicates if DW_apb_i2c, as
[6]	D.C.	1'b0	R_TX_ABRT	an I2C transmitter, is unable to
[6]	RO			complete the intended actions on
				the contents of the transmit FIFO
				This bit is set to 1 when
[[[RO	1'b0	R_RD_REQ	DW_apb_i2c is acting as a slave and
[5]				another I2C master is attempting to
				read data from DW_apb_i2c
				This bit is set to 1 when the
[[]		1160		transmit buffer is at or below the
[4]	RO	1'b0	R_TX_EMPTY	threshold value set in the IC_TX_TL
				register
				Set during transmit if the transmit
				buffer is filled to
[[[]			, _, _, _,	IC TX BUFFER DEPTH and the
[3]	RO	1'b0	R_TX_OVER	processor attempts to issue another
				I2C command by writing to the
				IC_DATA_CMD register
				Set when the receive buffer reaches
[2]	RO	1'b0	R RX FULL	or goes above the RX_TL threshold
				in the IC RX TL register
		O 1'b0	R_RX_OVER	Set if the receive buffer is
[1]	RO			completely filled to
				IC RX BUFFER DEPTH and an
	1			I C_IV_DOTTEN_DEL TITALIA ALI

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.

Title: QMS7926 Datasheet

Rev: A

				additional byte is received from an
				external I2C device
				Set if the processor attempts to
[0]	RO	1'b0	R RX UNDER	read the receive buffer when it is
				empty by reading from the
				IC_DATA_CMD register
0x30			IC_INTR_MASK	
[31:12]	RW	20'b0	Reserved	Reserved
[11]	RW	1'b1	R_GEN_CALL	mask R_GEN_CALL interrupt status bits
[10]	RW	1'b0	R_START_DET	mask R_START_DET interrupt status bits
[9]	RW	1'b0	R STOP DET	mask R_STOP_DET interrupt status
				bits
[8]	RW	1'b0	R ACTIVITY	mask R_ACTIVITY interrupt status
[-]				bits
[7]	RW	1'b1	R RX DONE	mask R_RX_DONE interrupt status
r. 1			15 55	bits
[6]	RW	1'b1	R TX ABRT	mask R_TX_ABRT interrupt status
[-,			12.12.10.11	bits
[5]	RW	1'b1	R_RD_REQ	mask R_RD_REQ interrupt status bits
[4]	D) 4 /	all a	D. TV. SAADTV	mask R TX EMPTY interrupt status
[4]	RW	1'b1	R_TX_EMPTY	bits
[2]	D) 4 /	all a	D TV 01/50	mask R_TX_OVER interrupt status
[3]	RW	1'b1	R_TX_OVER	bits
[0]	5144	DIA/ 4H-4	D DV 51111	mask R RX FULL interrupt status
[2]	RW	1'b1	R_RX_FULL	bits
F4.1	5144	411.4	2 24 2452	mask R RX OVER interrupt status
[1]	RW	1'b1	R_RX_OVER	bits
F-3				mask R RX UNDER interrupt status
[0]	RW	1'b1	R_RX_UNDER	bits
0x34			IC_RAW_INTR_STAT	
[31:12]	RO	20'b0	Reserved	Reserved
	RO			Set only when a General Call
[11]		1'b0	GEN_CALL	address is received and it is
				acknowledged
				Indicates whether a START or
[10]	RO	1'b0	START_DET	RESTART condition has occurred on
-				the I2C interface

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.

Document #: 13-52-18 **Title:** QMS79

Title: QMS7926 Datasheet

Rev: A

[0]	D 0	411.0	CTOD D==	Indicates whether a STOP condition
[9]	RO	1'b0	STOP_DET	has occurred on the I2C interface
				This bit captures DW_apb_i2c
[8]	RO	1'b0	ACTIVITY	activity and stays set until it is
				cleared
				When the DW_apb_i2c is acting as
[-1	DO	411-0	DV DONE	a slave-transmitter, this bit is set to
[7]	RO	1'b0	RX_DONE	1 if the master does not
				acknowledge a transmitted byte
				This bit indicates if DW_apb_i2c, as
[6]	DO	411-0	TV ADDT	an I2C transmitter, is unable to
[6]	RO	1'b0	TX_ABRT	complete the intended actions on
				the contents of the transmit FIFO
				This bit is set to 1 when
[E]	DO.	1160	RD_REQ	DW_apb_i2c is acting as a slave and
[5]	RO	1'b0		another I2C master is attempting to
				read data from DW_apb_i2c
				This bit is set to 1 when the
[4]	DO	1'b0	TX_EMPTY	transmit buffer is at or below the
[4]	RO			threshold value set in the IC_TX_TL
				register
				Set during transmit if the transmit
				buffer is filled to
[3]	RO	1'b0	TX OVER	IC_TX_BUFFER_DEPTH and the
[2]	110		IX_OVER	processor attempts to issue another
				I2C command by writing to the
				IC_DATA_CMD register
				Set when the receive buffer reaches
[2]	RO	1'b0	RX_FULL	or goes above the RX_TL threshold
				in the IC_RX_TL register
				Set if the receive buffer is
				completely filled to
[1]	RO	1'b0	RX_OVER	IC_RX_BUFFER_DEPTH and an
				additional byte is received from an
				external I2C device
		1'b0		Set if the processor attempts to
[0]	RO		RX_UNDER	read the receive buffer when it is
				empty by reading from the
			10 517	IC_DATA_CMD register
0x38			IC_RX_TL	

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.

Document #: 13-52-18 **Title:** QMS7926 Datasheet

Rev: A

[31:8]	RO	24'b0	Reserved	Reserved
[7:0]	RW	8'b0	RX TL	Receive FIFO Threshold Level
0x3c	1		IC_TX_TL	
[31:8]	RO	24'b0	Reserved	Reserved
[7:0]	RW	8'b0	TX TL	Transmit FIFO Threshold Level
0x40	1	0.00	IC_CLR_INTR	Transmer in a timeshala zevel
[31:1]	RO	31'b0	Reserved	Reserved
				Read this register to clear the
				combined interrupt, all individual
[0]	RO	1'b0	CLR_INTR	interrupts, and the
				IC_TX_ABRT_SOURCE register
0x44			IC_CLR_RX_UNDER	re_rv_r.b.rr_ee errez register
[31:1]	RO	31'b0	Reserved	Reserved
[]				Read this register to clear the
[0]	RO	1'b0	CLR RX UNDER	RX UNDER interrupt (bit 0) of the
[0]		1 50	CEN_NX_ONDER	IC RAW INTR STAT register
0x48			IC_CLR_RX_OVER	
[31:1]	RO	31'b0	Reserved	Reserved
[0 = 1 =]			110001100	Read this register to clear the
[0]	RO	1'b0	CLR_RX_OVER	RX OVER interrupt (bit 1) of the
[-]				IC RAW INTR STAT register
0x4c			IC_CLR_TX_OVER	
[31:1]	RO	31'b0	Reserved	Reserved
				Read this register to clear the
[0]	RO	1'b0	CLR TX OVER	TX OVER interrupt (bit 3) of the
				IC RAW INTR STAT register
0x50			IC_CLR_RD_REQ	
[31:1]	RO	31'b0	Reserved	Reserved
				Read this register to clear the
[0]	RO	1'b0	CLR RD REQ	RD REQ interrupt (bit 5) of the
				IC RAW INTR STAT register
0x54			IC_CLR_TX_ABRT	
[31:1]	RO	31'b0	Reserved	Reserved
-				Read this register to clear the
[0]	RO	0 1'b0	CLD TV ADDT	TX_ABRT interrupt (bit 6) of the
[0]			CLR_TX_ABRT	IC RAW INTR STAT register, and
				the IC_TX_ABRT_SOURCE register
0x58			IC_CLR_RX_DONE	
[31:1]	RO	31'b0	Reserved	Reserved

The information contained herein is the exclusive property of QST, and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of OST.

Title: QMS7926 Datasheet

Rev: A

		T		
				Read this register to clear the
[0]	RO	1'b0	CLR_RX_DONE	RX_DONE interrupt (bit 7) of the
				IC_RAW_INTR_STAT register
0x5c			IC_CLR_ACTIVITY	
[31:1]	RO	31'b0	Reserved	Reserved
				Reading this register clears the
				ACTIVITY interrupt if the I2C is not
[0]	RO	1'b0	CLR_ACTIVITY	active anymore. If the I2C module is
				still active on the bus, the ACTIVITY
				interrupt bit continues to be set
0x60			IC_CLR_STOP_DET	
[31:1]	RO	31'b0	Reserved	Reserved
				Read this register to clear the
[0]	RO	1'b0	CLR_STOP_DET	STOP_DET interrupt (bit 9) of the
				IC_RAW_INTR_STAT register
0x64			IC_CLR_START_DET	
[31:1]	RO	31'b0	Reserved	Reserved
				Read this register to clear the
[0]	RO	1'b0	CLR START DET	START DET interrupt (bit 10) of the
				IC RAW INTR STAT register
0x68			IC_CLR_GEN_CALL	
[31:1]	RO	31'b0	Reserved	Reserved
				Read this register to clear the
[0]	RO	1'b0	CLR GEN CALL	GEN CALL interrupt (bit 11) of
				IC RAW INTR STAT register
0х6с			IC_ENABLE	
[31:2]	RO	30'b0	Reserved	Reserved
				When set, the controller initiates
				the transfer abort
[1]	RW	1'b0	ABORT	1'b0: ABORT not initiated or ABORT
' '				done
				1'b1: ABORT operation in progress
				Controls whether the DW apb i2c
1		l		is enabled
[0]	RW	N 1'b0	ENABLE	1'b0: disable
				1'b1: enable
0x70			IC_STATUS	32.2.00.00
[31:7]	RO	25'b0	Reserved	Reserved
[]				1

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.

Document #: 13-52-18 **Titl**

Title: QMS7926 Datasheet

Rev: A

	ı	1		
				Slave FSM Activity Status
[6]	RO	1'b0	SLV_ACTIVITY	1'b0: in IDLE state
				1'b1: not in IDLE state
				Master FSM Activity Status
[5]	RO	1'b0	MST_ACTIVITY	1'b0: in IDLE state
				1'b1: not in IDLE state
				Receive FIFO Completely Full
[4]	RO	1'b0	RFF	1'b0: not full
				1'b1: full
				Receive FIFO Not Empty
[3]	RO	1'b0	RFNE	1'b0: empty
				1'b1: not empty
				Transmit FIFO Completely Empty
[2]	RO	1'b1	TFE	1'b0: not empty
				1'b1: empty
				Transmit FIFO Not Full
[1]	RO	1'b1	TFNF	1'b0: full
				1'b1: not full
[0]	RO	1'b0	ACTIVITY	I2C Activity Status
0x74			IC_TXFLR	
[31:4]	RO	28'b0	Reserved	Reserved
				Transmit FIFO Level. Contains the
[3:0]	RO	4'b0	TXFLR	number of valid data entries in the
				transmit FIFO
0x78			IC_RXFLR	
[31:4]	RO	28'b0	Reserved	Reserved
				Receive FIFO Level. Contains the
[3:0]	RO	4'b0	RXFLR	number of valid data entries in the
				receive FIFO
0х7с			IC_RXFLR	
[31:16]	RO	16'b0	Reserved	Reserved
[4 5 0]	DV4	4 CH: 4	IC CDA HOLD	Sets the required SDA hold time in
[15:0]	RW	16'b1	IC_SDA_HOLD	units of ic_clk period
0x80			IC_TX_ABRT_SOURCE	
[24 24]	D.C.	OIL C		This field preserves the TXFLR value
[31:24]	RO	8'b0	TX_FLUSH_CNT	prior to the last TX_ABRT event
[23:17]	RO	7'b0	Reserved	Reserved
				This is a master-mode-only bit.
[16]	RO	1'b0	ABRT_USER_ABRT	Master has detected the transfer
				abort (IC_ENABLE[1])
				abolt (IC_ENABLE[1])

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.

Title: QMS7926 Datasheet

Rev: A

	1	1		
[15]	RO	1'b0	ABRT_SLVRD_INTX	When the processor side responds to a slave mode request for data to be transmitted to a remote master and user writes a 1 in CMD (bit 8) of IC_DATA_CMD register
[14]	RO	1'b0	ABRT_SLV_ARBLOST	Slave lost the bus while transmitting data to a remote master
[13]	RO	1'b0	ABRT_SLVFLUSH_TXFIFO	Slave has received a read command and some data exists in the TX FIFO so the slave issues a TX_ABRT interrupt to flush old data in TX FIFO
[12]	RO	1'b0	ARB_LOST	Master has lost arbitration, or if IC_TX_ABRT_SOURCE[14] is also set, then the slave transmitter has lost arbitration
[11]	RO	1'b0	ABRT_MASTER_DIS	User tries to initiate a Master operation with the Master mode disabled
[10]	RO	1'b0	ABRT_10B_RD_NORSTRT	The restart is disabled(IC_RESTART_EN bit (IC_CON[5]) = 0) and the master sends a read command in 10-bit addressing mode
[9]	RO	1'b0	ABRT_SBYTE_NORSTRT	The restart is disabled (IC_RESTART_EN bit (IC_CON[5]) = 0) and the user is trying to send a START Byte
[8]	RO	1'b0	ABRT_HS_NORSTRT	The restart is disabled(IC_RESTART_EN bit (IC_CON[5]) = 0) and the user is trying to use the master to transfer data in High Speed mode
[7]	RO	1'b0	ABRT_SBYTE_ACKDET	Master has sent a START Byte and the START Byte was acknowledged (wrong behavior)
[6]	RO	1'b0	ABRT_HS_ACKDET	Master is in High Speed mode and the High Speed Master code was acknowledged (wrong behavior)

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.

Title: QMS7926 Datasheet

Rev: A

				T
				DW_apb_i2c in master mode sent a
				General Call but the user
[5]	RO	1'b0	ABRT_GCALL_READ	programmed the byte following the
				General Call to be a read from the
				bus (IC_DATA_CMD[9] is set to 1)
				DW_apb_i2c in master mode sent a
[4]	RO	1'b0	ABRT_GCALL_NOACK	General Call and no slave on the
				bus acknowledged the General Call
				This is a master-mode only bit.
				Master has received an
				acknowledgement for the address,
[3]	RO	1'b0	ABRT_TXDATA_NOACK	but when it sent data byte(s)
				following the address, it did not
				receive an acknowledge from the
				remote slave(s)
				Master is in 10-bit address mode
[2]	RO	1'b0	ABRT 10ADDR2 NOACK	and the second address byte of the
[2]	NO	1 00	ABRI_IOADDRZ_NOACK	10-bit address was not
				acknowledged by any slave
				Master is in 10-bit address mode
[1]	RO	1'b0	ABRT_10ADDR1_NOACK	and the first 10-bit address byte
				was not acknowledged by any slave
				Master is in 7-bit addressing mode
[0]	RO	1'b0	ABRT_7B_ADDR_NOACK	and the address sent was not
				acknowledged by any slave
0x84			IC_SLV_DATA_NACK_ONLY	
[31:1]	RO	31'b0	Reserved	Reserved
				Generate NACK
[0]	RW	1'b0	NACK	1'b0: generate NACK after data byte
[0]	IVV	1 50	NACK	received
				1'b1: generate NACK/ACK normally
0x88			IC_DMA_CR	
[31:2]	RO	30'b0	Reserved	Reserved
				Transmit DMA Enable
[1]	RW	1'b0	TDMAE	1'b0: disable
				1'b1: enable
				Receive DMA Enable
[0]	RW	1'b0	RDMAE	1'b0: disable
				1'b1: enable
0x8c			IC_DMA_TDLR	

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.

Title: QMS7926 Datasheet

Rev: A

[31:3]	RO	29'b0	Reserved	Reserved
[2:0]	RW	3'b0	DMATDL	Transmit Data Level
0x90	LVV	3 00	IC_DMA_RDLR	Transmit Data Level
[31:3]	RO	29'b0	Reserved	Reserved
<u> </u>				
[2:0]	RW	3'b0	DMARDL IC CDA CETUD	Receive Data Level
0x94	50	2411.0	IC_SDA_SETUP	
[31:8]	RO	24'b0	Reserved	Reserved
[7:0]	RW	8'b0x64	SDA_SETUP	SDA Setup
0x98			IC_ACK_GENERAL_CALL	
[31:1]	RO	31'b0	Reserved	Reserved
[0]	RW	1'b1	ACK_GEN_CALL	ACK General Call
0x9c			IC_ENABLE_STATUS	
[31:3]	RO	31'b0	Reserved	Reserved
[2]	RO	1'b0	SLV_RX_DATA_LOST	Slave Received Data Lost
[1]	RO	1'b0	SLV_DISABLED_WHILE_BUSY	Slave Disabled While Busy
[+]	NO	1 00	SEV_DISABLED_WITTEL_BOST	(Transmit, Receive)
				ic_en Status
				1'b0: DW_apb_i2c is deemed
[0]	RO	1'b0	IC_EN	completely inactive
				1'b1: DW_apb_i2c is deemed to be
				in an enabled state
0xa0			IC_FS_SPKLEN	
[31:8]	RO	24'b0	Reserved	Reserved
				This register must be set before any
[7:0]	RW	8'b0xff	IC_FS_SPKLEN	I2C bus transaction can take place
				to ensure stable operation
0xa4			IC_HS_SPKLEN	
[31:8]	RO	24'b0	Reserved	Reserved
				This register must be set before any
[7:0]	RW	8'b0xff	IC_HS_SPKLEN	I2C bus transaction can take place
				to ensure stable operation
0xf4			IC_COMP_PARAM_1	·
[31:24]	RO	8'b0	Reserved	Reserved
				The value of this register is derived
				from the IC TX BUFFER DEPTH
		au a		coreConsultant parameter
[23:16]	RO	8'b0	TX_BUFFER_DEPTH	8'b0x00: Reserved
				8'b0x01: 2
				8'b0x02: 3
				0 DUNUZ. 3

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.

Title: QMS7926 Datasheet

Rev: A

				 8'b0xff: 256
	1			
				The value of this register is derived
				from the IC_RX_BUFFER_DEPTH
				coreConsultant parameter. For a
[45.0]		011.0	DV DUESED DEDTU	description of this parameter
[15:8]	RO	8'b0	RX_BUFFER_DEPTH	8'b0x00: Reserved
				8'b0x01: 2
				8'b0x02: 3
				8'b0xff: 256
				The value of this register is derived
				from the
[7]	RO	1'b0	ADD ENCODED PARAMS	IC_ADD_ENCODED_PARAMS
				coreConsultant parameter.
				1'b0: False
	1			1'b1: True
				The value of this register is derived
[6]	RO	411.0	HAS_DMA	from the IC_HAS_DMA
[6]		1'b0		coreConsultant parameter
				1'b0: False
	1			1'b1: True
				The value of this register is derived
[F]	DC	411-0	INITE IO	from the IC_INTR_IO
[5]	RO	1'b0	INTR_IO	coreConsultant parameter
				1'b0: Individual
	1			1'b1: Combined
				The value of this register is derived
[[]		411.0		from the IC_HC_COUNT_VALUES
[4]	RO	1'b0	HC_COUNT_VALUES	coreConsultant parameter
				1'b0: False
	1			1'b1: True
				The value of this register is derived
				from the IC_MAX_SPEED_MODE
[011.0		coreConsultant parameter
[3:2]	RO	2'b0	MAX_SPEED_MODE	2'b00: Reserved
				2'b01: Standard
				2'b10: Fast
				2'b11: High

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.

Title: QMS7926 Datasheet

Rev: A

[1:0]	RO	2'b0	APB_DATA_WIDTH	The value of this register is derived from the APB_DATA_WIDTH coreConsultant parameter 2'b00: 8 bits 2'b01: 16 bits 2'b10: 32 bits 2'b11: Reserved
0xf8			IC_COMP_VERSION	
[31:0]	RO	32'b0	IC_COMP_VERSION	Specific values for this register are described in the Releases Table in the AMBA 2 release notes
0xfc			IC_COMP_TYPE	
[31:0]	RO	32'b0	IC_COMP_TYPE	This assigned unique hex value is constant and is derived from the two ASCII letters "DW" followed by a 16-bit unsigned number

Table 19: I2C registers

3.9 I2S

I2S wrapper contains one I2S master and one I2S slave. They are logically exclusive. Only one block is alive at a time. The operation mode for master mode and slave mode is controlled by PERI_MASTER_SELECT Register in COM block.

bit	Reset value	Definition
3	0	I2S1 is master mode when set
2	0	12S0 is master mode when set

Table 20: PERI_MASTER_SELECT Register bit definition (base address = 0x4002_302C)

3.9.1 Register table

12S registers are listed below.

Base address: 4000 9000

OFFSET	TYPE	RESET	NAME	DESCRIPTION
0x00			IER	
[31:1]	RO	31'b0	Reserved	Reserved
				DW_apb_i2s enable
[0]	RW	1'b0	IEN	1'b0: disable
				1'b1: enable
0x04			IRER	
[31:1]	RO	31'b0	Reserved	Reserved

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.	94 / 148
--	----------

Title: QMS7926 Datasheet

Rev: A

				Receiver block enable
[0]	RW	1'b0	RXEN	1'b0: disable
				1'b1: enable
0x08			ITER	
[31:1]	RO	31'b0	Reserved	Reserved
				Transmitter block enable
[0]	RW	1'b0	TXEN	1'b0: disable
				1'b1: enable
0х0с			CER	
[31:1]	RO	31'b0	Reserved	Reserved
				Clock generation enable/disable
[0]	RW	1'b0	CLKEN	1'b0: disable
				1'b1: enable
0x10			CCR	
[31:5]	RO	27'b0	Reserved	Reserved
				These bits are used to program the
				number of sclk cycles for which the world
			WSS	select line(ws_out) stays in the left or
[4:3]	RW	2'b00		right sample mode
				2'b00: 16 clock cycles
				2'b01: 24 clock cycles
				2'b10: 32 clock cycles
				These bits are used to program the gating
				of sclk
				3'b000: No clock gating
[2:0]	RW	W 3'b0	SCLKG	3'b001: Gate after 12 clock cycles
				3'b010: Gate after 16 clock cycles
				3'b011: Gate after 20 clock cycles
				3'b100: Gate after 24 clock cycles
0x14			RXFFR	
[31:1]	RO	31'b0	Reserved	Reserved
[0]	wo	1'b0	RXFFR	Receiver FIFO Reset;Receiver Block must
נטן	VVO	1 00	NAFFN	be disabled prior to writing this bit
0x18			TXFFR	
[31:1]	RO	31'b0	Reserved	Reserved
				Transimitter FIFO Reset;Transimitter
[0]	WO	1'b0	TXFFR	Block must be disabled prior to writing
				this bit
0x20			LRBR0	

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.

Title: QMS7926 Datasheet Rev: A

[31:16]	RO	16'b0	Reserved	Reserved
				The left stereo data received serially from
[15:0]	RO	16'b0	LRBRO	the receive channel input is read through
				this register
0x20			LTHR0	
[31:16]	RO	16'b0	Reserved	Reserved
				The left stereo to be transmitted serially
[15:0]	WO	16'b0	LTHR0	through the transmit channel output is
				written through this register
0x24			RRBR0	
[31:16]	RO	16'b0	Reserved	Reserved
				The right stereo data received serially
[15:0]	RO	16'b0	RRBR0	from the receive channel input is read
				through this register
0x24			RTHR0	
[31:16]	RO	16'b0	Reserved	Reserved
				The right stereo to be transmitted
[15:0]	WO	16'b0	RTHRO	serially through the transmit channel
				output is written through this register
0x28			RER0	
[31:1]	RO	31'b0	Reserved	Reserved
		1'b1	RXCHEN0	Receive channel enable
[0]	RW			1'b0: disable
				1'b1: enable
0x2c			TER0	
[31:1]	RO	31'b0	Reserved	Reserved
				Transimit channel enable
[0]	RW	1'b1	TXCHEN0	1'b0: disable
				1'b1: enable
0x30			RCR0	
[31:3]	RO	29'b0	Reserved	Reserved
				These bits are used to program the
				desired data resolution of the receiver
[2:0]				and enables the LSB of the incoming left
	D\A/	2'6010	\\\\I EN	(or right) word to be placed in the LSB of
	RW	3'b010	WLEN	the LRBRO(or RRBEO) register
				3'b000: Ignore world length
				3'b001: 12 bit resolution
	1			3'b010: 16 bit resolution

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.

Title: QMS7926 Datasheet

Rev: A

				3'b011: 20 bit resolution
				3'b100: 24 bit resolution
				3'b101: 32 bit resolution
0x34			TCR0	
[31:3]	RO	29'b0	Reserved	Reserved
				These bits are used to program the data
				resolution of the transmitter and ensure
				the MSB of the data is transmitted first
				3'b000: Ignore world length
[2:0]	RW	3'b010	WLEN	3'b001: 12 bit resolution
				3'b010: 16 bit resolution
				3'b011: 20 bit resolution
				3'b100: 24 bit resolution
				3'b101: 32 bit resolution
0x38			ISR0	
[31:6]	RO	26'b0	Reserved	Reserved
				Status of Data Overrun interrupt for the
r=1	RO	1'b0	TXFO	TX channel
[5]				1'b0: TX FIFO write valid
				1'b1: TX FIFO write overrun
		1'b1	TXFE	Status of Transmit Empty Trigger
[4]	RO			interrupt
[4]				1'b0: trigger level not reached
				1'b1: trigger level reached
[3:2]	RO	2'b0	Reserved	Reserved
				Status of Data Overrun interrupt for the
[1]	RO	1'b0	RXFO	RX channel
[1]	NO	1 00		1'b0: RX FIFO write valid
				1'b1: RX FIFO write overrun
				Status of Receive Data Available interrupt
[0]	RO	1'b0	RXDA	1'b0: trigger level not reached
				1'b1: trigger level reached
0x3c			IMR0	
[31:6]	RO	26'b0	Reserved	Reserved
				Masks TX FIFO Overrun interrupt
[5]	RW	1'b1	TXFOM	1'b0: unmasks interrupt
				1'b1: masks interrupt
[4]	D\A/	1'b1	TVEENA	Masks TX FIFO Empty interrupt
[4]	RW	1 01	TXFEM	1'b0: unmasks interrupt

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.

Title: QMS7926 Datasheet

Rev: A

	1	<u> </u>		1'b1: masks interrupt
[2.2]	RO	2'b0	Reserved	Reserved
[3:2]	RU	2 00	Reserved	
[4]	DV4/	allea		Masks RX FIFO Overrun interrupt
[1]	RW	1'b1	RXFOM	1'b0: unmasks interrupt
				1'b1: masks interrupt
				Masks RX FIFO Data Available interrupt
[0]	RW	1'b1	RXDAM	1'b0: unmasks interrupt
				1'b1: masks interrupt
0x40			ROR0	
[31:1]	RO	31'b0	Reserved	Reserved
				Read this bit to clear the RX FIFO Data
[0]	RO	1'b1	RXCHO	Overrun interrupt
[U]	KO	1 01	RACITO	1'b0: RX FIFO write valid
				1'b1: RX FIFO write overrun
0x44			TOR0	
[31:1]	RO	31'b0	Reserved	Reserved
				Read this bit to clear the TX FIFO Data
[0]	DO	1161	TYCHO	Overrun interrupt
[0]	RO	1'b1	TXCHO	1'b0: TX FIFO write valid
				1'b1: TX FIFO write overrun
0x48			RFCR0	
[31:4]	RO	29'b0	Reserved	Reserved
				These bits program the trigger level in the
[3:0]	RW	3'b011	RXCHDT	RX FIFO at which the Received Data
				Available interrupt is generated
0x4c			TFCR0	
[31:4]	RO	29'b0	Reserved	Reserved
				Transmit Channel Empty Trigger; These
[2, 6]	DVA	211-044	TVCUET	bits program the trigger level in the TX
[3:0]	RW	3'b011	TXCHET	FIFO at which the Empty Threshold
				Reached interrupt is generated
0x50			RFF0	
[31:1]	RO	31'b0	Reserved	Reserved
<u> </u>				Receive Channel FIFO Reset; Writing a 1
[0]	wo	411-0	DVCHED	to this register flushes an individual RX
[0]		1'b0	RXCHFR	FIFO, Rx channel or block must be
				disabled prior to writing this bit
0x54			TFF0	
[31:1]	RO	31'b0	Reserved	Reserved

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.

Document #: 13-52-18 **Title:** QMS7926

Title: QMS7926 Datasheet

Rev: A

[0]	wo	1'b0	TXCHFR	Transmit Channel FIFO Reset; Writing a 1 to this register flushes channel's TX FIFO,Tx channel or block must be disabled prior to writing this bit
0x1c0			RXDMA	
[31:0]	RO	32'b0	RXDMA	Receiver Block DMA Register. Used to cycle repeatedly through the enabled receive channels (from lowest numbered to highest), reading stereo data pairs
0x1c4			RRXDMA	
[31:1]	RO	31'b0	Reserved	Reserved
[0]	wo	1'b0	RRXDMA	Reset Receiver Block DMA Register. Writing a 1 to this self-clearing register reset the RXDMA register mid-cycle to point to the lowest enabled Receive channel
0x1c8			TXDMA	
[31:0]	RO	32'b0	TXDMA	Transmitter Block DMA Register. Used to cycle repeatedly through the enabled receive channels (from lowest numbered to highest), reading stereo data pairs
0x1cc			RTXDMA	
[31:1]	RO	31'b0	Reserved	Reserved
[0]	wo	1'b0	RTXDMA	Reset Transmitter Block DMA Register. Writing a 1 to this self-clearing register reset the TXDMA register mid-cycle to point to the lowest enabled Receive channel
0x1f0			I2S_COMP_PARAM_2	
[31:13]	RO	19'b0	Reserved	Reserved
[12:10]	RO	3'b0	I2S_RX_WORDSIZE_3	3'b000: 12 bit resolution 3'b001: 16 bit resolution 3'b010: 20 bit resolution 3'b011: 24 bit resolution 3'b100: 32 bit resolution 3'b101~111: Reserved
[9:7]	RO	3'b0	I2S_RX_WORDSIZE_2	3'b000: 12 bit resolution 3'b001: 16 bit resolution 3'b010: 20 bit resolution 3'b011: 24 bit resolution

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.

Title: QMS7926 Datasheet

Rev: A

		<u> </u>	1	211.400.22.1.1.
				3'b100: 32 bit resolution
				3'b101~111: Reserved
[6]	RO	1'b0	Reserved	Reserved
				3'b000: 12 bit resolution
				3'b001: 16 bit resolution
[5:3]	RO	3'b0	I2S RX WORDSIZE 1	3'b010: 20 bit resolution
[3.3]	1.0		123_11/1_11/10/10/10/10/10/10/10/10/10/10/10/10/1	3'b011: 24 bit resolution
				3'b100: 32 bit resolution
				3'b101~111: Reserved
				3'b000: 12 bit resolution
				3'b001: 16 bit resolution
[2:0]	RO	3'b0	I2S RX WORDSIZE 0	3'b010: 20 bit resolution
[2.0]	NO	3 00	123_KX_WORD3IZE_0	3'b011: 24 bit resolution
				3'b100: 32 bit resolution
				3'b101~111: Reserved
0x1f4			I2S_COMP_PARAM_1	
[31:28]	RO	4'b0	Reserved	Reserved
		3'b0		3'b000: 12 bit resolution
				3'b001: 16 bit resolution
[27:25]	RO		I2S TX WORDSIZE 3	3'b010: 20 bit resolution
[27.23]	KO		123_1X_WORD312L_3	3'b011: 24 bit resolution
				3'b100: 32 bit resolution
				3'b101~111: Reserved
				3'b000: 12 bit resolution
				3'b001: 16 bit resolution
[24:22]	RO	3'b0	I2S_TX_WORDSIZE_2	3'b010: 20 bit resolution
				3'b011: 24 bit resolution
				3'b100: 32 bit resolution
				3'b101~111: Reserved
				3'b000: 12 bit resolution
				3'b001: 16 bit resolution
[21.10]	RO	3'b0	I2S TX WORDSIZE 1	3'b010: 20 bit resolution
[21:19]	NO	3 00	IZ2_IV_MOUDSIZE_T	3'b011: 24 bit resolution
				3'b100: 32 bit resolution
				3'b101~111: Reserved
[18:16]	RO	3'b0	I2S_TX_WORDSIZE_0	3'b000: 12 bit resolution

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.

Title: QMS7926 Datasheet

Rev: A

	1	1		T
				3'b001: 16 bit resolution
				3'b010: 20 bit resolution
				3'b011: 24 bit resolution
				3'b100: 32 bit resolution
				3'b101~111: Reserved
[15:11]	RO	5'b0	Reserved	Reserved
				2'b00: 1 channel
[10.0]	DO.	2'b0	ISC TV CHANNELS	2'b01: 2 channels
[10:9]	RO	2 00	I2S_TX_CHANNELS	2'b10: 3 channels
				2'b11: 4 channels
				2'b00: 1 channel
[0.7]		211.0	LOG DV GUANNEIG	2'b01: 2 channels
[8:7]	RO	2'b0	I2S_RX_CHANNELS	2'b10: 3 channels
				2'b11: 4 channels
[6]		411.0	100 05050/50 0100/	1'b0: FALSE
[6]	RO	1'b0	I2S_RECEIVER_BLOCK	1'b1: TRUE
r_1		411.0		1'b0: FALSE
[5]	RO	1'b0	I2S_TRANSIMITER_BLOCK	1'b1: TRUE
F - 3		411.0		1'b0: FALSE
[4]	RO	1'b0	I2S_MODE_EN	1'b1: TRUE
				2'b00: 2
[0.0]		2'b0	I2S_FIFO_DEPTH_GLONAL	2'b01: 4
[3:2]	RO			2'b10: 8
				2'b11: 16
				2'b00: 8
[4 0]		211.0		2'b01: 16
[1:0]	RO	2'b0	APB_DATA_WIDTH	2'b10: 32
				2'b11: Reserved
0x1f8			I2S_COMP_VERSION	
				Specific values for this register are
[31:28]	RO	32'b0	I2S_COMP_VERSION	described in the Releases Table in the
				AMBA 2 release notes
[31:3]	RO	29'b0	Reserved	Reserved
[2:0]	RW	3'b0	DMATDL	Transmit Data Level
0x90			IC_DMA_RDLR	
[31:3]	RO	29'b0	Reserved	Reserved
[2:0]	RW	3'b0	DMARDL	Receive Data Level
0x94			IC_SDA_SETUP	
[31:8]	RO	24'b0	Reserved	Reserved

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.

Title: QMS7926 Datasheet

Rev: A

[7:0]	RW	8'b0x64	SDA SETUP	SDA Setup
	100	O DONO I	_	SERVICE
0x98			IC_ACK_GENERAL_CALL	
[31:1]	RO	31'b0	Reserved	Reserved
[0]	RW	1'b1	ACK_GEN_CALL	ACK General Call
0x9c			IC_ENABLE_STATUS	
[31:3]	RO	31'b0	Reserved	Reserved
[2]	RO	1'b0	SLV_RX_DATA_LOST	Slave Received Data Lost
[1]	RO	1'b0	SLV_DISABLED_WHILE_BU SY	Slave Disabled While Busy (Transmit, Receive)
				ic_en Status
[0]	RO	1'b0	IC_EN	1'b0: DW_apb_i2c is deemed completely inactive
				1'b1: DW_apb_i2c is deemed to be in an enabled state
0xa0			IC_FS_SPKLEN	
[31:8]	RO	24'b0	Reserved	Reserved
[7:0]	RW	8'b0xff	IC_FS_SPKLEN	This register must be set before any I2C bus transaction can take place to ensure stable operation
0xa4			IC_HS_SPKLEN	·
[31:8]	RO	24'b0	Reserved	Reserved
[7:0]	RW	8'b0xff	IC_HS_SPKLEN	This register must be set before any I2C bus transaction can take place to ensure stable operation
0xf4			IC COMP PARAM 1	·
[31:24]	RO	8'b0	Reserved	Reserved
[23:16]	RO	8'b0	TX_BUFFER_DEPTH	The value of this register is derived from the IC_TX_BUFFER_DEPTH coreConsultant parameter 8'b0x00: Reserved 8'b0x01: 2 8'b0x02: 3
				 8'b0xff: 256
[15:8]	RO	8'b0	RX_BUFFER_DEPTH	The value of this register is derived from the IC_RX_BUFFER_DEPTH coreConsultant parameter. For a description of this parameter 8'b0x00: Reserved

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.

Document #: 13-52-18 **Title:**

Title: QMS7926 Datasheet

Rev: A

				8'b0x01: 2
				8'b0x02: 3
				8'b0xff: 256
				The value of this register is derived from
				the IC_ADD_ENCODED_PARAMS
[7]	RO	1'b0	ADD_ENCODED_PARAMS	coreConsultant parameter.
				1'b0: False
				1'b1: True
				The value of this register is derived from
				the IC_HAS_DMA coreConsultant
[6]	RO	1'b0	HAS_DMA	parameter
				1'b0: False
				1'b1: True
				The value of this register is derived from
				the IC_INTR_IO coreConsultant
[5]	RO	1'b0	INTR_IO	parameter
				1'b0: Individual
				1'b1: Combined
				The value of this register is derived from
				the IC_HC_COUNT_VALUES
[4]	RO	1'b0	HC_COUNT_VALUES	coreConsultant parameter
				1'b0: False
				1'b1: True
				The value of this register is derived from
				the IC_MAX_SPEED_MODE
				coreConsultant parameter
[3:2]	RO	2'b0	MAX_SPEED_MODE	2'b00: Reserved
				2'b01: Standard
				2'b10: Fast
				2'b11: High
				The value of this register is derived from
				the APB_DATA_WIDTH coreConsultant
				parameter
[1:0]	RO	2'b0	APB_DATA_WIDTH	2'b00: 8 bits
				2'b01: 16 bits
				2'b10: 32 bits
				2'b11: Reserved
0xf8			IC_COMP_VERSION	

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.

Document #: 13-52-18 **Title:** QMS7926 Datasheet **Rev: A**

[31:0]	RO	32'b0	IC_COMP_VERSION	Specific values for this register are described in the Releases Table in the AMBA 2 release notes
0xfc			IC_COMP_TYPE	
[31:0]	RO	32'b0	IC_COMP_TYPE	This assigned unique hex value is constant and is derived from the two ASCII letters "DW" followed by a 16-bit unsigned number

Table 21: I2S registers

3.10 **UART (UART)**

The Universal Asynchronous Receiver/Transmitter offers fast, full-duplex, asynchronous serial communication with built-in flow control (CTS, RTS) support in HW up to 1Mbps baud. Parity checking and generation for the 9th data bit are supported.

The GPIOs used for each UART interface line can be chosen from any GPIO on the device and are independently configurable. This enables great flexibility in device pin out and enables efficient use of board space and signal routing.

3.10.1 Register table

UART registers are listed below.

Base address: 4000 4000

OFFSET	TYPE	RESET	NAME	DESCRIPTION
0x00			RBR(Receive Buffer Register)	LCR[7] bit = 0
[31:8]	RO	24'b0	Reserved	Reserved
[7:0]	RO	8'b0	Receive Buffer Register	LSR[0] bit = 1,The data in this
[7.0]	NO	0.00	Receive Burier Register	register is valid
0x00			THR(Transmit Holding Register)	LCR[7] bit = 0
[31:8]	WO	24'b0	Reserved	Reserved
[7:0]	wo	8'b0	Transmit Holding Degister	LSR[5] bit = 1,The data should
[7.0]	VVO	8 00	Transmit Holding Register	only be written to the THR
				1.When UART_16550 == YES,
0200	0x00		DLL(Divisor Latch Low)	Then LCR[7] bit = 1
UXUU			DEE(DIVISOF LATCH LOW)	2.When UART_16550 == NO,
				Then LCR[7] bit = 1,USR[0] = 0
[31:8]	RO	24'b0	Reserved	Reserved
[7:0]	D\A/	RW 8'b0	Divisor Latch (low)	baud rate = (serial clock freq) /
[7.0]	KW			(16 * divisor)

The information contained herein is the exclusive property of QST, and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of QST.

Document #: 13-52-18 **Title:** QMS7926 Datasheet

Rev: A

0x04			DLH(Divisor Latch High)	1.When UART_16550 == YES, Then LCR[7] bit = 1 2.When UART_16550 == NO, Then LCR[7] bit = 1,USR[0] = 0
[31:8]	RO	24'b0	Reserved	Reserved
[7:0]	RW	8'b0	Divisor Latch (high)	baud rate = (serial clock freq) / (16 * divisor)
0x04			IER(Interrupt Enable Register)	LCR[7] bit = 0
[31:8]	RO	24'b0	Reserved	Reserved
[7]	RW	1'b0	PTIME	This is used to enable/disable the generation of THRE Interrupt 1'b0: disable 1'b1: enable
[6:4]	RO	3'b0	Reserved	Reserved
[3]	RW	1'b0	EDSSI	This is used to enable/disable the generation of Modem Status Interrupt 1'b0: disable 1'b1: enable
[2]	RW	1'b0	ELSI	This is used to enable/disable the generation of Receiver Line Status Interrupt 1'b0: disable 1'b1: enable
[1]	RW	1'b0	ETBEI	This is used to enable/disable the generation of Transmitter Holding Register Empty Interrupt 1'b0: disable 1'b1: enable
[0]	RW	1'b0	ERBFI	This is used to enable/disable the generation of Received Data Available Interrupt and the Character Timeout Interrupt (if in FIFO mode and FIFOs enabled) 1'b0: disable 1'b1: enable
0x08			IIR(Interrupt Identity Register)	
[31:8]	RO	24'b0	Reserved	Reserved

The information contained herein is the exclusive property of QST, and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of QST.

Title: QMS7926 Datasheet

Rev: A

		1		——————————————————————————————————————
				This is used to indicate whether
[7:6]	RO	2'b0	FIFOSE	the FIFOs are enabled or disabled
' '				2'b00: disable
				2'b11: enable
[5:4]	RO	2'b0	Reserved	Reserved
				This is used to indicates the
				highest priority pending interrupt
				which can be one of the following
				types
		4'b000		4'b0000: modem status
[3:0]	RO		IID	4'b0001: no interrupt pending
		1		4'b0010: THR empty
				4'b0100: received data available
				4'b0110: receiver line status
				4'b0111: busy detect
				4'b1100: character timeout
0x08			FCR(FIFO Control Register)	FIFO_MODE != NONE
[31:8]	RO	24'b0	Reserved	Reserved
				This is used to select the trigger
				level in the receiver FIFO at which
				the Received Data Available
				Interrupt is generated, The
r= 61				following trigger levels are
[7:6]	WO	2'b0	RT	supported:
				2'b00: 1 character in the FIFO
				2'b01: FIFO ¼ full
				2'b10: FIFO ½ full
				2'b11: FIFO 2 less than full
				This is used to select the empty
				threshold level at which the THRE
				Interrupts are generated when
				the mode is active, The following
[5:4]	wo	2'b0	TET	trigger levels are supported:
[0]				2'b00: FIFO empty
				2'b01: 2 characters in the FIFO
				2'b10: FIFO ¼ full
				2'b11: FIFO ½ full
				This determines the DMA
[3]	wo	1'b0	DMAM	signalling mode
[-]		- ~ ~ ~		1'b0: mode 0
1	1	I		± 50. 1110ac 0

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.

Title: QMS7926 Datasheet

Rev: A

				1'b1: mode 1
		1		This resets the control portion of
[2]	wo	1'b0	XFIFOR	the transmit FIFO and treats the
[4]	000	1 00	ATTION	FIFO as empty
		1		This resets the control portion of
[4]	14/0	1'b0	DELEGR	·
[1]	WO	1 00	RFIFOR	the receive FIFO and treats the
		1		FIFO as empty
				This enables/disables the
r				transmit (XMIT) and receive
[0]	WO	1'b0	FIFOE	(RCVR) FIFOs
				1'b0: disable
				1'b1: enable
0x0C			LCR(Line Control Register)	
[31:8]	RO	24'b0	Reserved	Reserved
				USR[0]=0,the bit is writeable; This
				bit is used to enable reading and
				writing of the Divisor Latch
[7]	RW	1'b0	DLAB	register (DLL and DLH) to set the
				baud rate of the UART
				1'b0: disable
				1'b1: enable
				This is used to cause a break
[6]	RW	1'b0	Break	condition to be transmitted to
				the receiving device
[5]	RO	1'b0	Reserved	Reserved
				USR[0]=0,the bit is writeable; This
			506	is used to select between even
				and odd parity, when parity is
[4]	D\A/	1'b0		enabled (PEN set to one)
[4]	RW	1 00	EPS	1'b0: an odd number of logic 1s is
				transmitted or checked
				1'b1: an even number of logic 1s
				is transmitted or checked
				USR[0]=0,the bit is writeable;
				enable and disable parity
				generation and detection in
[3]	RW	1'b0	PEN	transmitted and received serial
[3]			FLIN	character respectively
				1'b0: disable
				1'b1: enable
		1		1 01. CHASIC

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.

Title: QMS7926 Datasheet

Rev: A

	1	T	<u> </u>	
[2]		1'b0	STOP	USR[0]=0,the bit is writeable;
	RW			select the number of stop bits per
				character that the peripheral
				transmits and receives
				1'b0: 1 stop bit
				1'b1: 1.5 stop bits when DLS
				(LCR[1:0]) is zero, else 2 stop bit
[1:0]	RW	2'b0	DLS	USR[0]=0,the bit is writeable; This
				is used to select the number of
				data bits per character that the
				peripheral transmits and receives.
				The number of bit that may be
				selected areas follows:
				2'b00: 5 bits
				2'b01: 6 bits
				2'b10: 7 bits
				2'b11: 8 bits
0x10			MCR(Modem Control Register)	
[31:7]	RO	25'b0	Reserved	Reserved
[6]	RW	1'b0	SIRE	SIR MODE == Enabled, the bit is
				writeable; enable/disable the
				IrDA SIR Mode
				1'b0: disable
				1'b1: enable
[5]	RW	1'b0	AFCE	AFCE MODE == Enabled, the bit
				is writeable; enable/disable the
				Auto Flow Control
				1'b0: disable
				1'b1: enable
[4]		1'b0	LoopBack	This is used to put the UART into
	RW			a diagnostic mode for test
				purposes
[3]	<u> </u>	1'b0	OUT2	This is used to directly control the
				user-designated Output2
	RW			(out2 n) output
				1'b0: de-asserted (logic 1)
				1'b1: asserted (logic 0)
[2]	RW	1'b0	OUT1	This is used to directly control the
				user-designated Output1
				(out1_n) output
				(out1_ii) output

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.

Title: QMS7926 Datasheet

Rev: A

	1			
				1'b0: de-asserted (logic 1)
				1'b1: asserted (logic 0)
				Request to Send. This is used to
				directly control the Request to
[1]	RW	1'b0	RTS	Send (rts_n) output
				1'b0: de-asserted (logic 1)
				1'b1: asserted (logic 0)
				This is used to directly control the
				Data Terminal Ready (dtr_n)
[0]	RW	1'b0	DTR	output
				1'b0: de-asserted (logic 1)
				1'b1: asserted (logic 0)
0x14			LSR(Line Status Register)	
[31:8]	RO	24'b0	Reserved	Reserved
				FIFO_MODE != NONE and FCR[0]
				= 1,the bit is relevant; This is used
				to indicate if there is at least one
[7]	RO	1'b0	RFE	parity error, framing error, or
				break indication in the FIFO
				1'b0: no error
				1'b1: error
				Transmitter Empty bit;
				FIFO_MODE != NONE and FCR[0]
				= 1,this bit is set whenever the
				Transmitter Shift Register and the
[6]	RO	1'b1	TEMT	FIFO are both empty
[0]	I NO		121411	FIFO_MODE == NONE and FCR[0]
				= 0,this bit is set whenever the
				Transmitter Holding Register and
				the Transmitter Shift Register are
				both empty
[5]	RO	1'b1	THRE	Transmit Holding Register Empty
ادا	1.0	1 01	TIME	bit
				This is used to indicate the
[4]	RO	1'b0	BI	detection of a break sequence on
				the serial input data.
				This is used to indicate the
[3]	RO	O 1'b0	.'b0 FE	occurrence of a framing error in
ری				the receiver
				1'b0: no framing error

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.

Title: QMS7926 Datasheet

Rev: A

				1'b1: framing error
				This is used to indicate the
				occurrence of a parity error in the
				receiver if the Parity Enable (PEN)
[2]	RO	1'b0	PE	bit (LCR[3]) is set
				1'b0: no parity error
				1'b1: parity error
				This is used to indicate the
				occurrence of an overrun error
[1]	RO	1'b0	OE	1'b0: no overrun error
				1'b1: overrun error
				This is used to indicate that the
				receiver contains at least one
				character in the RBR or the
[0]	RO	1'b0	DR	receiver FIFO
				1'b0: no data ready
				1'b1: data ready
0x18			MSR(Modem Status Register)	1 b1. data ready
[31:8]	RO	24'b0	Reserved	Reserved
[31.0]	NO	24 00	Reserved	This is used to indicate the
				current state of the modem
[7]	RO	1'b0	DCD	control line dcd_n
[7]	KO	1 00	DCD	1'b0: de-asserted (logic 1)
				1'b1: asserted (logic 0) This is used to indicate the
				current state of the modem
[6]	RO	1'b0	RI	
[6]	, KO	1 00	N	control line ri_n
				1'b0: de-asserted (logic 1)
				1'b1: asserted (logic 0)
[5]	RO			This is used to indicate the current state of the modem
		1'b0	DSR	
				control line dsr_n
				1'b0: de-asserted (logic 1)
		1		1'b1: asserted (logic 0)
				This is used to indicate the
[4]	RO	1'b0	CTS	current state of the modem
[4]				control line cts_n
				1'b0: de-asserted (logic 1)
				1'b1: asserted (logic 0)

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.

Rev: A

				This is used to indicate that the
				modem control line dcd_n has
				changed since the last time the
[3]	RO	1'b0	DDCD	MSR was read
[5]	NO	1 00	DDCD	1'b0: no change on dcd_n since
				last read of MSR
				1'b1: change on dcd_n since last
				read of MSR
				This is used to indicate that a
				change on the input ri_n has
				occurred since the last time the
[2]	DO	1160	TEDI	MSR was read
[2]	RO	1'b0	TERI	1'b0: no change on ri_n since last
				read of MSR
				1'b1: change on ri_n since last
				read of MSR
				This is used to indicate that the
				modem control line dsr_n has
			DDCD	changed since the last time the
[4]	DО	1160		MSR was read
[1]	RO	1'b0	DDSR	1'b0: no change on dsr_n since
				last read of MSR
				1'b1: change on dsr_n since last
				read of MSR
				This is used to indicate that the
				modem control line cts_n has
				changed since the last time the
[0]	DO	1160	DOTS	MSR was read
[0]	RO	1'b0	DCTS	1'b0: no change on ctsdsr_n since
				last read of MSR
				1'b1: change on ctsdsr_n since
				last read of MSR
0x1C			SCR(Scratchpad Register)	
[31:8]	RO	24'b0	Reserved	Reserved
				This register is for programmers
[7:0]	RW	8'b0	Scratchpad Register	to use as a temporary storage
				space
0x20			LPDLL(Low Power Divisor Latch	SIR_LP_RX == Yes
UAZU			Low Register)	
[31:8]	RO	24'b0	Reserved	Reserved

The information contained herein is the exclusive property of QST, and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of QST.

Title: QMS7926 Datasheet

Rev: A

[7:0]	RW	8'b0	LPDLL	This register makes up the lower 8-bits of a 16-bit, this register that contains the baud rate divisor for the UART
0x24			LPDLH(Low Power Divisor Latch High Register)	SIR_LP_RX == Yes
[31:8]	RO	24'b0	Reserved	Reserved
[7:0]	RW	8'b0	LPDLH	This register makes up the upper 8-bits of a 16-bit, this register that contains the baud rate divisor for the UART
0x30~0 x6c			SRBR(Shadow Receive Buffer Register)	SHADOW == YES and LCR[7] bit = 0
[31:8]	RO	24'b0	Reserved	Reserved
[7:0]	RO	8'b0	Shadow Receive Buffer Register	This is a shadow register for the RBR and has been allocated sixteen 32-bit locations so as to accommodate burst accesses from the master
0x30~0			STHR(Shadow Transmit Holding	SHADOW == YES and LCR[7] bit =
х6с			Register)	0
[31:8]	RO	24'b0	Reserved	Reserved
[7:0]	wo	8'b0	Shadow Transmit Holding Register	This is a shadow register for the THR and has been allocated sixteen 32-bit locations so as to accommodate burst accesses from the master
0x70			FAR(FIFO Access Register)	
[31:1]	RO	31'b0	Reserved	Reserved
[0]	RW	1'b0	FIFO Access Register	Writes have no effect when FIFO_ACCESS == No, always readable, This register is use to enable a FIFO access mode for testing 1'b0: disable 1'b1: enable
0x74			TFR(Transmit FIFO Read)	FIFO_ACCESS == YES
[31:8]	RO	24'b0	Reserved	Reserved
[7:0]	RO	8'b0	Transmit FIFO Read	FAR[0] = 1,the bit is valid;Reading this register gives the data at the

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.

Title: QMS7926 Datasheet

Rev: A

	T			
				top of the transmit FIFO or the
				data in the THR
0x78			RFW(Receive FIFO Write)	FIFO_ACCESS == YES
[31:10]	RO	22'b0	Reserved	Reserved
				FAR[0] = 1,the bit is valid; This bit
[9]	wo	1'b0	RFFE	is used to write framing error
[2]	***	1 50	THE STATE OF THE S	detection information to the
				receive FIFO or the RBR
				FAR[0] = 1,the bit is valid; This bit
[8]	wo	1'b0	RFPE	is used to write parity error
[O]	VVO	1 50	NIFL	detection information to the
				receive FIFO or the RBR
				FAR[0] = 1,the bit is valid; This bit
[7:0]	wo	8'b0	RFWD	of the data that is written to the
[7.0]	VVO	8 00	N WD	RFWD is pushed into the receive
				FIFO or the RBR
0x7C			USR(UART Status Register)	
[31:5]	RO	27'b0	Reserved	Reserved
				FIFO_STAT == YES, the bit is valid;
	RO	1'b0	RFF	This is used to indicate that the
[4]				receive FIFO is completely full
				1'b0: not full
				1'b1: full
				FIFO_STAT == YES, the bit is valid;
	[2] DO	1'b0	DENIE	This is used to indicate that the
[2]				receive FIFO contains one or
[3] RO	1 00	RFNE	more entries	
				1'b0: empty
				1'b1: not empty
				FIFO_STAT == YES, the bit is valid;
[2]		1'b1		This is used to indicate that the
	DO		TEE	transmit FIFO is completely
	RO		TFE	empty
				1'b0: not empty
				1'b1: empty
				FIFO_STAT == YES,the bit is
				vlid;This is used to indicate that
[1]	RO	1'b1	TFNF	the transmit FIFO in not full
-				1'b0: full
				1'b1: not full
				1'b1: not full

The information contained herein is the exclusive property of QST, and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of QST.

Title: QMS7926 Datasheet

Rev: A

				This is indicates that a serial
				transfer is in progress, when
[0] RO				cleared indicates that the
[0]	RO	1'b0	BUSY	DW_apb_uart is idle or inactive
				1'b0: idle or inactive
				1'b1: busy (actively transferring
				data)
0x80			TFL(Transmit FIFO Level)	FIFO_STAT ==
OXOO			Tre(Transmit Til O Level)	YES;FIFO_ADDR_WIDTH=4
[31:5]	RO	27'b0	Reserved	Reserved
[4:0]	RO	5'b0	Transmit FIFO Level	This is indicates the number of
[4.0]	KO	3 00	Transmit in O Level	data entries in the transmit FIFO
0x84			PEL/Passiva FIEO Laval)	FIFO_STAT ==
UX04			RFL(Receive FIFO Level)	YES;FIFO_ADDR_WIDTH=4
[31:5]	RO	27'b0	Reserved	Reserved
[4.0]	DO.	5'b0	Pagaina FIFO Loval	This is indicates the number of
[4:0]	RO	5 00	Receive FIFO Level	data entries in the receive FIFO
0x88			SRR(Software Reset Register)	SHADOW == YES
[31:3]	RO	29'b0	Reserved	Reserved
				FIFO_MODE == None, the written
[2]	wo	1'b0	XFR	have no effect; XMIT FIFO Reset.
[2]	WO	1 00	ATIC	This is a shadow register for the
				XMIT FIFO Reset bit(FCR[2])
				FIFO_MODE == None, the written
[1]	wo	1'b0	RFR	have no effect; RCVR FIFO Reset.
[1]	VVO	1 50	NEK	This is a shadow register for the
				RCVR FIFO Reset bit(FCR[1])
				This asynchronously resets the
[0]	WO	1'b0	UR	DW_apb_uart and synchronously
				removes the reset assertion
0x8C			SRTS(Shadow Request to Send)	SHADOW == YES
[31:1]	RO	31'b0	Reserved	Reserved
[0]	RW	1'b0	Shadow Poquost to Sond	This is a shadow register for the
[0]	LVV	1 00	Shadow Request to Send	RTS bit(MCR[1])
0x90			SBCR(Shadow Break Control Register)	SHADOW == YES
[31:1]	RO	31'b0	Reserved	Reserved
[0]	RW	1'b0	Shadow Break Control Register	This is a shadow register for the
				Break bit(LCR[6])

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.

Title: QMS7926 Datasheet

Rev: A

0x94			SDMAM(Shadow DMA Mode)	FIFO_MODE != None and
			<u> </u>	SHADOW == YES
[31:1]	RO	31'b0	Reserved	Reserved
				This is a shadow register for the
[0]	RW	1'b0	Shadow DMA Mode	DMA mode bit(FCR[3])
[0]	100	150	Shadow Bivii (Wode	1'b0: mode 0
				1'b1: mode 1
0x98			SFE(Shadow FIFO Enable)	FIFO_MODE != None and
UNJO			31 L(311auow 111 O Litable)	SHADOW == YES
[31:1]	RO	31'b0	Reserved	Reserved
				This is a shadow register for the
[0]	DVA	1'b0	Shadow FIFO Enable	FIFO enable bit(FCR[0])
[0]	RW	1 00	Shadow FIFO Enable	1'b0: disable
				1'b1: enable
0.00			CDT/Charles DC//D Titales	FIFO_MODE != None and
0x9C			SRT(Shadow RCVR Trigger)	SHADOW == YES
[31:2]	RO	30'b0	Reserved	Reserved
[4.6]		211.0	Shadow RCVR Trigger	This is a shadow register for the
				RCVR trigger bits(FCR[7:6])
				2'b00: 1 character in the FIFO
[1:0]	RW	2'b0		2'b01: FIFO ¼ full
				2'b10: FIFO ½ full
				2'b11: FIFO 2 less than full
				FIFO_MODE != None and
0xA0			STET(Shadow TX Empty Trigger)	THRE_MODE_USER == Enabled
			1, 35,	and SHADOW == YES
[31:2]	RO	30'b0	Reserved	Reserved
				THRE MODE USER == Disabled,
				the written have no effect; This is
				a shadow register for the TX
				empty trigger bits (FCR[5:4])
[1:0]	RW	2'b0	Shadow TX Empty Trigger	2'b00: FIFO empty
				2'b01: 2 characters in the FIFO
				2'b10: FIFO ¼ full
				2'b11: FIFO ½ full
0xA4			HTX(Halt TX)	
[31:1]	RO	31'b0	Reserved	Reserved
[0]	1.0	3100	T.C.C. V.C.G.	FIFO MODE == None, the written
[0]	RW	1'b0	Halt TX	have no effect; This register is use
ردا	1.00	1 50	Tigit 17	to halt transmissions for testing
				to nait transmissions for testing

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.

Title: QMS7926 Datasheet

Rev: A

1'b1: enable 1'b1			T		1'b0: disable
DMASA(DMA Software Acknowledge) Reserved Reserved					
		 		D24464/D244 6 6:	1 b1: enable
Reserved	0xA8				
DMA_EXTRA == No, the writh have no effect; This register to perform a DMA software acknowledge if a transfer net to be terminated due to an accondition	[24.4]	-	2411.0		
No	[31:1]	RO	31'b0	Reserved	
To perform a DMA software acknowledge to perform a DMA software acknowledge if a transfer not to be terminated due to an accondition					_
OxF4					
CPR(Component Parameter to be terminated due to an accondition	[0]	wo	1'b0	DMA Software Acknowledge	
OxF4 CPR(Component Parameter Register) CPR(Component Parameter Register) UART_ADD_ENCODED_PARE == YES [31:24] RO 8'b0 Reserved 8'b0x00: 0 8'b0x00: 0 8'b0x00: 16 8'b0x01: 16 8'b0x02: 32	[-]				_
CPR(Component Parameter Register)					
Register					condition
[31:24] RO 8'b0 Reserved Reserved [23:16] RO 8'b0 FIFO_MODE [23:16] RO 8'b0 FIFO_MODE [15:14] RO 2'b0 Reserved Reserved [15:14] RO 1'b0 DMA_EXTRA [12] RO 1'b0 UART_ADD_ENCODED_PARAMS [11] RO 1'b0 SHADOW [10] RO 1'b0 FIFO_STAT [10] RO 1'b0 FIFO_STAT [10] RO 1'b0 FIFO_ACCESS [1b1: TRUE [1b0: FALSE 1'b1: TRUE 1'b0: FALSE 1'b1: TRUE	0xF4				UART_ADD_ENCODED_PARAMS
RO					== YES
RO	[31:24]	RO	8'b0	Reserved	Reserved
RO					8'b0x00: 0
[23:16] RO 8'b0 FIFO_MODE S'b0x80: 2048 8'b0x81- 0xff: reserved [15:14] RO 2'b0 Reserved Reserved [13] RO 1'b0 DMA_EXTRA 1'b0: FALSE [12] RO 1'b0 UART_ADD_ENCODED_PARAMS 1'b1: TRUE [11] RO 1'b0 SHADOW 1'b0: FALSE [10] RO 1'b0 FIFO_STAT 1'b0: FALSE [10] RO 1'b0 FIFO_STAT 1'b0: FALSE [10] RO 1'b0 FIFO_ACCESS 1'b1: TRUE [10] RO 1'b0 ADDITIONAL_FEAT 1'b0: FALSE [10] RO 1'b0 FIFO_ACCESS 1'b1: TRUE [10] RO 1'b0 ADDITIONAL_FEAT 1'b0: FALSE [10] RO 1'b0 FALSE [10] RO 1'b0 FIFO_ACCESS 1'b1: TRUE [10] RO 1'b0 ADDITIONAL_FEAT 1'b0: FALSE [10] RO 1'b0 FALSE 1'b1: TRUE [10] RO 1'b0 FIFO_ACCESS 1'b1: TRU					
Sibox80: 2048 Sibox81- 0xff: reserved	[22:16]	R∩	g'h0	FIEO MODE	8'b0x02: 32
RO 2'b0 Reserved	[23:16]	KO	8 50	THO_MODE	
[15:14] RO 2'b0 Reserved [13] RO 1'b0 DMA_EXTRA 1'b0: FALSE [14] RO 1'b0 UART_ADD_ENCODED_PARAMS 1'b0: FALSE [15] RO 1'b0 SHADOW 1'b0: FALSE [10] RO 1'b0 FIFO_STAT 1'b0: FALSE [10] RO 1'b0 FIFO_ACCESS 1'b0: FALSE [10] RO 1'b0 ADDITIONAL_FEAT 1'b0: FALSE [10] RO 1'b0 ADDITIONAL_FEAT 1'b0: FALSE [10] 1'b0: FALSE 1'b1: TRUE					8'b0x80: 2048
[13] RO 1'b0 DMA_EXTRA 1'b0: FALSE [12] RO 1'b0 UART_ADD_ENCODED_PARAMS 1'b0: FALSE [11] RO 1'b0 SHADOW 1'b0: FALSE [10] RO 1'b0 FIFO_STAT 1'b0: FALSE [10] RO 1'b0 FIFO_ACCESS 1'b1: TRUE [8] RO 1'b0 ADDITIONAL_FEAT 1'b0: FALSE 1'b1: TRUE 1'b0: FALSE 1'b1: TRUE 1'b1: TRUE					8'b0x81- 0xff: reserved
1	[15:14]	RO	2'b0	Reserved	Reserved
Tib1: TRUE 1'b0: FALSE 1'b1: TRUE 1'b0: FALSE 1'b1: TRUE 1'b0: FALSE 1'b1: TRUE 1'b0: FALSE 1'b1: TRUE	[12]	ВО	1'h0	DA4A EVIDA	1'b0: FALSE
1	[13]	KU	1 00	DIVIA_EXTRA	1'b1: TRUE
[11] RO 1'b0 SHADOW 1'b0: FALSE [10] RO 1'b0 FIFO_STAT 1'b0: FALSE [10] RO 1'b0 FIFO_ACCESS 1'b0: FALSE [10] RO 1'b0 FIFO_ACCESS 1'b0: FALSE [10] RO 1'b0: FALSE 1'b1: TRUE [10] RO 1'b0: FALSE 1'b0: FALSE [10] 1'b0: FALSE 1'b0: FALSE	[12]	ВО	1!h0	LIADT ADD ENCODED DARAMS	1'b0: FALSE
RO	[12]	KO	1 00	UART_ADD_ENCODED_PARAIVIS	1'b1: TRUE
1'b1: TRUE 1'b0: FALSE 1'b1: TRUE 1'b0: FALSE 1'b1: TRUE 1'b1: TRUE 1'b1: TRUE 1'b0: FALSE 1'b1: TRUE 1'b0: FALSE 1'b1: TRUE	[11]	ВО	1!h0	SHADOW	1'b0: FALSE
[10] RO 1'b0 FIFO_STAT 1'b1: TRUE [9] RO 1'b0 FIFO_ACCESS 1'b1: TRUE [8] RO 1'b0 ADDITIONAL_FEAT 1'b0: FALSE 1'b1: TRUE	[11]	KU	1 00	SHADOW	1'b1: TRUE
[9] RO 1'b0 FIFO_ACCESS 1'b0: FALSE 1'b1: TRUE [8] RO 1'b0 ADDITIONAL_FEAT 1'b0: FALSE 1'b1: TRUE	[10]	ВО	1!h0	FIFO STAT	1'b0: FALSE
[8] RO 1'b0 FIFO_ACCESS 1'b1: TRUE 1'b0: FALSE 1'b1: TRUE 1'b1: TRUE	[10]	KU	1 00	FIFO_STAT	1'b1: TRUE
[8] RO 1'b0 ADDITIONAL_FEAT 1'b1: TRUE 1'b0: FALSE 1'b1: TRUE	[0]	DO.	1160	FIEO ACCESS	1'b0: FALSE
[8] RO 1'b0 ADDITIONAL_FEAT 1'b1: TRUE	[9]	KU	1 00	FIFU_ACCESS	1'b1: TRUE
TDI: TRUE	[0]	ВО.	411-0	ADDITIONAL FEAT	1'b0: FALSE
1160. FALCE	[8]	KU	1 00	ADDITIONAL_FEAT	1'b1: TRUE
T DU. FALSE	[7]	DO.	1160	CID I D MODE	1'b0: FALSE
[7] RO 1'b0 SIR_LP_MODE 1'b1: TRUE	[/]	KU	1 00	SIK_LP_MODE	1'b1: TRUE
1'b0: FALSE	[6]	ВО.	411-0	CID MODE	1'b0: FALSE
[6] RO 1'b0 SIR_MODE 1'b1: TRUE	[0]	ΚU	1 00	2IK_INIODE	1'b1: TRUE
1'b0: FALSE	[DC	41160	TUDE MODE	1'b0: FALSE
[5] RO 1'b0 THRE_MODE 1'b1: TRUE	[5]	ΚU	1,00	I HKE_MODE	

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.

48 P _{砂睿}	Document #:	13-52-18	Title: QMS7926 Datasheet	Rev: A

[4]	RO	1'b0	ACCE MODE	1'b0: FALSE
[4]	KO	1 00	AFCE_MODE	1'b1: TRUE
[3:2]	RO	2'b0	Reserved	Reserved
				2'b00: 8 bits
[1.0]	RO	2'b0	ADD DATA MIDTH	2'b01: 16 bits
[1:0]	KO	2 00	APB_DATA_WIDTH	2'b10: 32 bits
				2'b11: reserved
0xF8			UCV(UART Component Version)	ADDITIONAL_FEATURES == YES
				ASCII value for each number in
[31:0]	RO	32'b0	UART Component Version	the version, followed by *. For
	NO			example 32_30_31_2A
				represents the version 2.01*
0xFC			CTR(Component Type Register)	ADDITIONAL_FEATURES == YES
		32'b0x4		This register contains the
[31:0]	RO	457011 0	Peripheral ID	peripherals identification code
				periprierais identification code

Table 22: UART registers

3.11 Pulse Width Modulation (PWM)

QMS7926 supports 6 channels of Pulse Width Modulation (PWM) outputs. PWM outputs generate waveforms with variable duty cycle or pulse width programmed by registers. And each of the 6 PWM outputs can be individually programmed. Their duty cycles are controlled by programming individual counters associated with each channel.

The master clock is 16MHz. For each PWM outputs, first there is a prescaler (pre-divider) with division ratio of 2 to 128 (only 2^N division ratios are supported), followed by another 16bit counter with programmable max count, denoted as top_count. When the 16bit counter counts from 0 to top_count, it resets back to 0. So the frequency of the PWM is given by:

A threshold counter number can be programmed, when the 16bit counter reaches the threshold, PWM output toggles. So the duty cycle is:

The polarity of the PWM can also be programmed, which indicates output 1 or 0 when counter is below/above the threshold. A PWM waveform vs counter values are illustrated in the following Figure 13, where the polarity is positive. Also in this case the counter ramps up and then resets, we call it "up mode".

There is also a "up and down mode", where the counter ramps up to count_top and then ramps down, instead of reset.

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.	117 / 148
--	-----------

Rev: A

As discussed above, the key register bits for one PWM channel are: 16bit top_count, 16bit threshold count, 3bit prescaler count, PWM polarity, PWM mode (up or up/down), PWM enable, and PWM load enable (load new settings). All 6 PWM channels can be individually programmed by registers with addresses from 0x4000_E004 to 0x4000_E044. In addition, one should enable registers 0x4000_E000<0><4> to allow all PWM channels can be programmed. For details please refer to documents of QMS7926 register tables.

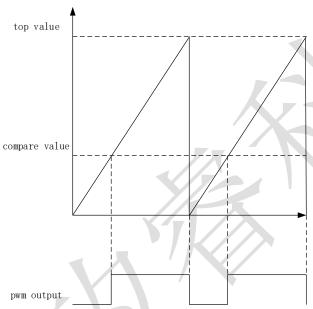


Figure 10: PWM operation

3.11.1 Register table

PWM related registers are listed below.

Base address: 4000 E000

OFFSET	TYPE	RESET	NAME	DESCRIPTION
0x00			PWMEN	pwm enable
[31:18]	RO	14'b0	reserved	Reserved
[17]	RW	1'b0	pwm_load_45	load parameter of PWM channel 4, 5. need to be conjunction with setting bit16 of PWMxCTL0 registers. 1'b0: no load 1'b1: load
[16]	RW	1'b0	pwm_en_45	enable of PWM channel 4, 5. need to be conjunction with setting bit0 of PWMxCTL0 registers. 1'b0: disable

The information contained herein is the exclusive property of QST, and shall not be distributed,	
reproduced, or disclosed in whole or in part without prior written permission of OST.	

				1'b1: enable
				load parameter of PWM channel 2, 3. need to be
				conjunction with setting bit16 of PWMxCTL0
[15]	RW	1'b0	pwm_load_23	registers.
				1'b0: no load
				1'b1: load
				enable of PWM channel 2, 3. need to be
				conjunction with setting bit0 of PWMxCTL0
[14]	RW	1'b0	pwm_en_23	registers.
				1'b0: disable
				1'b1: enable
				load parameter of PWM channel 0, 1. need to be
				conjunction with setting bit16 of PWMxCTL0
[13]	RW	1'b0	pwm load 01	registers.
			· – –	1'b0: no load
				1'b1: load
				enable of PWM channel 0, 1. need to be
			pwm_en_01	conjunction with setting bit0 of PWMxCTL0
[12]	RW	1'b0		registers.
				1'b0: disable
				1'b1: enable
				load parameter of PWM channel 3, 4, 5. need to be
				conjunction with setting bit16 of PWMxCTL0
[11]	RW	1'b0	pwm_load_345	registers.
			,	1'b0: no load
				1'b1: load
			_	enable of PWM channel 3, 4, 5. need to be
		1'b0		conjunction with setting bit0 of PWMxCTL0
[10]	RW		num on 24E	registers.
[10]	KVV		pwm_en_345	1'b0: disable
				1'b1: enable
		7		load parameter of PWM channel 0, 1, 2. need to be
				conjunction with setting bit16 of PWMxCTL0
[9]	RW	1'b0	pwm_load_012	registers.
				1'b0: no load
				1'b1: load
				enable of PWM channel 0, 1, 2. need to be
[8]	RW	RW 1'b0	pwm_en_012	conjunction with setting bit0 of PWMxCTL0
				registers.

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.

Document #: 13-52-18 **Title:**

Title: QMS7926 Datasheet

Rev: A

				1'b0: disable
				1'b1: enable
[7:5]	RO	3'b0	reserved	Reserved
[4]	RW	1'b0	pwm_load_all	load parameter of all six PWM channels. need to be conjunction with setting bit16 of PWMxCTL0 registers. 1'b0: no load 1'b1: load
[3:1]	RO	3'b0	reserved	Reserved
[0]	RW	1'b0	pwm_en_all	enable of all six PWM channels. need to be conjunction with setting bit0 of PWMxCTL0 registers. 1'b0: disable 1'b1: enable
0x04			PWM0CTL0	pwm channel 0 contrl reigister
			nmo land insta	instant load parameter of PWM channel 0.
[31]	RW	1'b0	pwm0_load_insta nt	1'b0: no load
				1'b1: instant load
[30:17]	RO	14'b0	reserved	Reserved
[16]	RW	1'b0	pwm0_load	load parameter of PWM channel 0. 1'b0: no load 1'b1: load
[15]	RO	1'b0	reserved	Reserved
[20]	1.0		reserved	clock prescaler of PWM channel 0.
				3'b000: pwm clk is divided by 1 for count clock
				3'b001: pwm_clk is divided by 2 for count clock
				3'b010: pwm_clk is divided by 4 for count clock
[14:12]	RW	3'b0	pwm0_clk_div	3'b011: pwm_clk is divided by 8 for count clock
				3'b100: pwm_clk is divided by 16 for count clock
				3'b101: pwm_clk is divided by 32 for count clock
				3'b110: pwm_clk is divided by 64 for count clock
				3'b111: pwm_clk is divided by 128 for count clock
[11:9]	RO	3'b0	reserved	Reserved
				count mode of PWM channel 0.
[8]	RW	1'b0	pwm0_cnt_mode	1'b0: up mode
				1'b1: up and down mode
[7:5]	RO	3'b0	reserved	Reserved
[4]	RW	1'b0	pwm0_polarity	output polarity setting of PWM channel 0.

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.

Document #: 13-52-18 **Title:** QMS7

Title: QMS7926 Datasheet Rev: A

[3:1] RC		3'b0		period is rising 1'b1: falling edge. Second edge within the PWM period is falling
		3'b0		
		3'b0		l noriod ic falling
		3'b0		period is falling
[0] RV	w		reserved	Reserved
[0] RV	W			enable of PWM channel 0.
		1'b0	pwm0_en	1'b0: disable
				1'b1: enable
0x08			PWM0CTL1	pwm channel 0 conter value setting
[31:16] RV	W	16'b0	pwm0_cmp_val	the compare value of PWM channel 0
[15:0] RV	W	16'b0	pwm0_cnt_top	the counter top value of PWM channel 0
0x10			PWM1CTL0	pwm channel 1 contrl reigister
			num1 load insta	instant load parameter of PWM channel 1.
[31] RV	W	1'b0	pwm1_load_insta nt	1'b0: no load
			110	1'b1: instant load
[30:17] RC	0	14'b0	reserved	Reserved
[16] RV	w	1'b0	pwm1_load	load parameter of PWM channel 1. 1'b0: no load
				1'b1: load
[15] RC	0	1'b0	reserved	Reserved
		100		clock prescaler of PWM channel 1.
				3'b000: pwm_clk is divided by 1 for count clock
				3'b001: pwm clk is divided by 2 for count clock
				3'b010: pwm clk is divided by 4 for count clock
[14:12] RV	w	3'b0	pwm1 clk div	3'b011: pwm clk is divided by 8 for count clock
-				3'b100: pwm clk is divided by 16 for count clock
				3'b101: pwm clk is divided by 32 for count clock
	, "			3'b110: pwm clk is divided by 64 for count clock
				3'b111: pwm clk is divided by 128 for count clock
[11:9] RC	0	3'b0	reserved	Reserved
		7		count mode of PWM channel 1.
[8] RV	w	1'b0	pwm1 cnt mode	1'b0: up mode
				1'b1: up and down mode
[7:5] RC	0	3'b0	reserved	Reserved
. ,				output polarity setting of PWM channel 1.
[4] RV	w	1'b0	pwm1_polarity	1'b0: rising edge. Second edge within the PWM
	-			period is rising

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.

Title: QMS7926 Datasheet

Rev: A

	1			All A C III I C I I I III I DIAMA
				1'b1: falling edge. Second edge within the PWM
		-11 -		period is falling
[3:1]	RO	3'b0	reserved	Reserved
				enable of PWM channel 1.
[0]	RW	1'b0	pwm1_en	1'b0: disable
				1'b1: enable
0x14			PWM1CTL1	pwm channel 1 conter value setting
[31:16]	RW	16'b0	pwm1_cmp_val	the compare value of PWM channel 1
[15:0]	RW	16'b0	pwm1_cnt_top	the counter top value of PWM channel 1
0x1C			PWM2CTL0	pwm channel 2 contrl reigister
			muuma laad imata	instant load parameter of PWM channel 2.
[31]	RW	1'b0	pwm2_load_insta	1'b0: no load
			nt	1'b1: instant load
[30:17]	RO	14'b0	reserved	Reserved
				load parameter of PWM channel 2.
[16]	RW	1'b0	pwm2_load	1'b0: no load
				1'b1: load
[15]	RO	1'b0	reserved	Reserved
			1/	clock prescaler of PWM channel 2.
				3'b000: pwm_clk is divided by 1 for count clock
				3'b001: pwm clk is divided by 2 for count clock
				3'b010: pwm clk is divided by 4 for count clock
[14:12]	RW	3'b0	pwm2_clk_div	3'b011: pwm clk is divided by 8 for count clock
[===]			prinz_om_on	3'b100: pwm clk is divided by 16 for count clock
				3'b101: pwm clk is divided by 32 for count clock
				3'b110: pwm_clk is divided by 64 for count clock
				3'b111: pwm clk is divided by 128 for count clock
[11:9]	RO	3'b0	reserved	Reserved
[11.5]	NO	3 50	reserved	count mode of PWM channel 2.
[8]	RW	1'b0	pwm2_cnt_mode	1'b0: up mode
[၀]	IXVV	1 50	pwiliz_clit_illoue	1'b1: up and down mode
[7:5]	RO	3'b0	reserved	Reserved
[[.1]	NO	3 50	16361VEU	
				output polarity setting of PWM channel 2.
[4]	DIA	1'b0	num? nolaritu	1'b0: rising edge. Second edge within the PWM
[4]	RW	1 00	pwm2_polarity	period is rising
				1'b1: falling edge. Second edge within the PWM
[2.4]	DC.	2160	una na muna d	period is falling
[3:1]	RO	3'b0	reserved	Reserved
[0]	RW	1'b0	pwm2_en	enable of PWM channel 2.

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.

Title: QMS7926 Datasheet

Rev: A

				1'b0: disable
				1'b1: enable
0x20		4.011.0	PWM2CTL1	pwm channel 2 conter value setting
[31:16]	RW	16'b0	pwm2_cmp_val	the compare value of PWM channel 2
[15:0]	RW	16'b0	pwm2_cnt_top	the counter top value of PWM channel 2
0x28			PWM3CTL0	pwm channel 3 contrl reigister
			pwm3 load insta	instant load parameter of PWM channel 3.
[31]	RW	1'b0	nt	1'b0: no load
			110	1'b1: instant load
[30:17]	RO	14'b0	reserved	Reserved
				load parameter of PWM channel 3.
[16]	RW	1'b0	pwm3_load	1'b0: no load
				1'b1: load
[15]	RO	1'b0	reserved	Reserved
				clock prescaler of PWM channel 3.
				3'b000: pwm clk is divided by 1 for count clock
				3'b001: pwm clk is divided by 2 for count clock
	RW	3'b0	pwm3_clk_div	3'b010: pwm clk is divided by 4 for count clock
[14:12]				3'b011: pwm_clk is divided by 8 for count clock
				3'b100: pwm clk is divided by 16 for count clock
				3'b101: pwm clk is divided by 32 for count clock
				3'b110: pwm clk is divided by 64 for count clock
				3'b111: pwm_clk is divided by 128 for count clock
[11:9]	RO	3'b0	reserved	Reserved
[==:0]			1000.100	count mode of PWM channel 3.
[8]	RW	1'b0	pwm3 cnt mode	1'b0: up mode
[0]	11.00	100	pwiiis_ciit_iiiode	1'b1: up and down mode
[7:5]	RO	3'b0	reserved	Reserved
[7.5]	NO 1	3 50	reserved	output polarity setting of PWM channel 3.
				1'b0: rising edge. Second edge within the PWM
[4]	RW	1'b0	pwm3 polarity	period is rising
ובו	11.00	1 55	Pwins_polarity	1'b1: falling edge. Second edge within the PWM
				period is falling
[3:1]	RO	3'b0	reserved	Reserved
[2.1]	NO	3 50	1C3CI VCU	enable of PWM channel 3.
[0]	RW	1'b0	nwm3 en	1'b0: disable
[ט]	T IVV	עמ ד	pwm3_en	1'b1: enable
0x2C		1	DWW.	pwm channel 0 conter value setting
	D\A/	16160	PWM3CTL1	
[31:16]	RW	16'b0	pwm3_cmp_val	the compare value of PWM channel 3

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.

Document #: 13-52-18 **Title:** QMS7926 Data:

Title: QMS7926 Datasheet Rev: A

[15:0]	RW	16'b0	pwm3_cnt_top	the counter top value of PWM channel 3
0x34			PWM4CTL0	pwm channel 4 contrl reigister
			pwm4_load_insta	instant load parameter of PWM channel 4.
[31]	RW	1'b0		1'b0: no load
			nt	1'b1: instant load
[30:17]	RO	14'b0	reserved	Reserved
				load parameter of PWM channel 4.
[16]	RW	1'b0	pwm4_load	1'b0: no load
				1'b1: load
[15]	RO	1'b0	reserved	Reserved
				clock prescaler of PWM channel 4.
				3'b000: pwm_clk is divided by 1 for count clock
				3'b001: pwm_clk is divided by 2 for count clock
				3'b010: pwm_clk is divided by 4 for count clock
[14:12]	RW	3'b0	pwm4_clk_div	3'b011: pwm_clk is divided by 8 for count clock
				3'b100: pwm_clk is divided by 16 for count clock
				3'b101: pwm_clk is divided by 32 for count clock
				3'b110: pwm_clk is divided by 64 for count clock
				3'b111: pwm_clk is divided by 128 for count clock
[11:9]	RO	3'b0	reserved	Reserved
				count mode of PWM channel 4.
[8]	RW	1'b0	pwm4_cnt_mode	1'b0: up mode
				1'b1: up and down mode
[7:5]	RO	3'b0	reserved	Reserved
		1'b0		output polarity setting of PWM channel 4.
				1'b0: rising edge. Second edge within the PWM
[4]	RW		pwm4_polarity	period is rising
				1'b1: falling edge. Second edge within the PWM
				period is falling
[3:1]	RO	3'b0	reserved	Reserved
				enable of PWM channel 4.
[0]	RW	1'b0	pwm4_en	1'b0: disable
	_			1'b1: enable
0x38			PWM4CTL1	pwm channel 4 conter value setting
[31:16]	RW	16'b0	pwm4_cmp_val	the compare value of PWM channel 4
[15:0]	RW	16'b0	pwm4_cnt_top	the counter top value of PWM channel 4
0x40			PWM5CTL0	pwm channel 5 contrl reigister
[31]	RW	1'b0	pwm5_load_insta	instant load parameter of PWM channel 5.
[31]	11.00	150	nt	1'b0: no load

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.

				1'b1: instant load
[30:17]	RO	14'b0	reserved	Reserved
[30.17]	NO	14 00	reserved	load parameter of PWM channel 5.
[16]	RW	1'b0	num F lood	1'b0: no load
[10]	INVV	1 50	pwm5_load	1'b1: load
[15]	RO	1'b0	reserved	Reserved
[13]	KO	1 00	reserveu	clock prescaler of PWM channel 5.
				3'b000: pwm clk is divided by 1 for count clock
				3'b001: pwm_clk is divided by 2 for count clock
				· - ·
[14.12]	D\A/	2160	manage alle alive	3'b010: pwm_clk is divided by 4 for count clock
[14:12]	RW	3'b0	pwm5_clk_div	3'b011: pwm_clk is divided by 8 for count clock
				3'b100: pwm_clk is divided by 16 for count clock
				3'b101: pwm_clk is divided by 32 for count clock
				3'b110: pwm_clk is divided by 64 for count clock
F				3'b111: pwm_clk is divided by 128 for count clock
[11:9]	RO	3'b0	reserved	Reserved
				count mode of PWM channel 5.
[8]	RW	1'b0	pwm5_cnt_mode	1'b0: up mode
				1'b1: up and down mode
[7:5]	RO	3'b0	reserved	Reserved
				output polarity setting of PWM channel 5.
				1'b0: rising edge. Second edge within the PWM
[4]	RW	1'b0	pwm5_polarity	period is rising
				1'b1: falling edge. Second edge within the PWM
				period is falling
[3:1]	RO	3'b0	reserved	Reserved
				enable of PWM channel 5.
[0]	RW	1'b0	pwm5_en	1'b0: disable
				1'b1: enable
0x44			PWM5CTL1	pwm channel 5 conter value setting
[31:16]	RW	16'b0	pwm5_cmp_val	the compare value of PWM channel 5
[15:0]	RW	16'b0	pwm5 cnt top	the counter top value of PWM channel 5

Table 23: PWM registers

3.12 Quadrature Decoder (QDEC)

The quadrature decoder provides buffered decoding of quadrature-encoded sensor signals with input debounce filters. It is suitable for mechanical and optical sensors. The sample period and accumulation are configurable to match application requirements. The

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.

Title: QMS7926 Datasheet

Rev: A

quadrature decoder has three-axis capability and index channel support. It can be programmed as 4x/2x/1x count mode.

3.12.1 Register table

Quadrature decoder related registers are listed below.

Base address: 4000 B000

OFFSET	TYPE	RESET	NAME	DESCRIPTION
0x00				< X
[31:9]	_	23'b0	reserved	
[8]	RW	1'b0	chnz_en	enable channel z
[7:5]	_	3'b0	reserved	Arax
[4]	RW	1'b0	chny_en	enable channel y
[3:1]	_	3'b0	reserved	
[0]	RW	1'b0	chnx_en	enable channel x
0x04			int_enable	
[31:30]	_	2'b0	reserved	//
[29]	D\A/	1'b0	int guaz Oaf on	enable interrupt, counter addition overflow
[29]	RW	1 00	int_quaz_02f_en	(from 0 to F)
[20]	DVV	1'b0	int guaz f20 an	enable interrupt, counter subtraction overflow
[28]	RW	1 00	int_quaz_f20_en	(from F to 0)
[27]	RW	1'b0	int_quay_02f_en	
[26]	RW	1'b0	int_quay_f20_en	
[25]	RW	1'b0	int_quax_02f_en	
[24]	RW	1'b0	int_quax_f20_en	
[23]		1'b0	reserved	
[22]	RW	1'b0	incz int modo	index counter interrupt mode
[22]	RVV	1 00	incz_int_mode	0 index changes, 1 index equals hit
[21]	L	1'b0	reserved	
[20]	RW	1'b0	int_incz_en	enable index counter interrupt
[19]	1	1'b0	reserved	
[18]	RW	1'b0	auaz int mada	quadrature counter interrupt mode
[10]	KVV	100	quaz_int_mode	0 index changes, 1 index equals hit
[17]	1	1'b0	reserved	
[16]	RW	1'b0	int_quaz_en	enable quadrature counter interrupt
[15]		1'b0	reserved	
[14]	RW	1'b0	incy_int_mode	
[13]	_	1'b0	reserved	
[12]	RW	1'b0	int_incy_en	

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.

Document #: 13-52-18 **Title:** Q

Title: QMS7926 Datasheet

Rev: A

[11]	_	1'b0	reserved	
[10]	RW	1'b0	quay_int_mode	
[9]	_	1'b0	reserved	
[8]	RW	1'b0	int_quay_en	_
[7]	_	1'b0	reserved	
[6]	RW	1'b0	incx_int_mode	
[5]	_	1'b0	reserved	
[4]	RW	1'b0	int_incx_mode	
[3]	_	1'b0	reserved	< X
[2]	RW	1'b0	quax_int_mode	
[1]	_	1'b0	reserved	7-3-7-2-7
[0]	RW	1'b0	int_quax_en	Arax
0x08			int_clear	/ X_ / \
[31:30]	_	2'b0	reserved	
[29]	WC	1'b0	quaz_02f_clr	clear 0 to F interrupt
[28]	WC	1'b0	quaz_f20_clr	clear F to 0 interrupt
[27]	WC	1'b0	quay_02f_clr	// - -X
[26]	WC	1'b0	quay_f20_clr	X71/X
[25]	WC	1'b0	quax_02f_clr	*1K//>
[24]	WC	1'b0	quax_f20_clr	' / \
[23:21]	_	3'b0	reserved	
[20]	WC	1'b0	incz_clr	clear index counter interrupt
[19:17]	_	3'b0	reserved	
[16]	WC	1'b0	quaz_clr	clear quadrature counter interrupt
[15:13]	_	3'b0	reserved	
[12]	WC	1'b0	incy_clr	
[11:9]	_	3'b0	reserved	
[8]	WC	1'b0	quay_clr	
[7:5]	_	3'b0	reserved	
[4]	WC	1'b0	incx_clr	
[3:1]	_	3'b0	reserved	
[0]	WC	1'b0	quax_clr	
0x0C			int_status	
[31:30]	+	2'b0	reserved	
[29]	RO	1'b0	int_quaz_02f	0 to F interrupt status
[28]	RO	1'b0	int_quaz_f20	F to 0 interrupt status
[27]	RO	1'b0	int_quay_02f	
[26]	RO	1'b0	int_quay_f20	
[25]	RO	1'b0	int_quax_02f	

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.

[24]	RO	1'b0	int_quax_f20	
[23:21]	_	3'b0	reserved	
[20]	RO	1'b0	int inc z	index counter interrupt status
[19:17]	_	3'b0	reserved	much counter interrupt status
[16]	RO	1'b0	int_qua_z	quadrature counter interrupt status
[15:13]	_	3'b0	reserved	quadrature counter interrupt status
[12]	RO	1'b0	int inc y	
[11:9]	_	3'b0	reserved	X
[8]	RO	1'b0	int_qua_y	
[7:5]	_	3'b0	reserved	
[4]	RO	1'b0	int_inc_x	
[3:1]	_	3'b0	reserved	A - 3 X
[0]	RO	1'b0	int_qua_x	
0x10				
[31:18]	_	14'b0	reserved	
				index counter mode
[17:16]	RW	2'b0	incx_mode	00 high level 01 positive edge
				10 negative edge 11 pos and neg edge
[15:2]	_	14'b0	reserved	* K//>
[1:0]	RW 2	/ 2'b0	quax_mode	quadrature counter mode
[1.0]				01 mode 1x , 10 mode 2x, 11 mode 3x
0x14				
[31:0]	RW	32'b0	quax_hit	to compare with qua_cnt, trigger interrupt
0x18				
[31:0]	RW	32'b0	incx_hit	to compare with inc_cnt, trigger interrupt
0x1C				/
[31:0]	RO	32'b0	quax_cnt	quadrature counter
0x20				
[31:0]	RO	32'b0	incx_cnt	index counter
0x24				
[31:18]	_	14'b0	reserved	
[17:16]	RW	2'b0	incy_mode	
[15:2]		14'b0	reserved	
[1:0]	RW	2'b0	quay_mode	
0x28	1			
[31:0]	RW	32'b0	quay_hit	
0x2C				
[31:0]	RW	32'b0	incy_hit	
0x30				

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.

₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩	Document #:	13-52-18	Title: QMS7926 Datasheet
7 7			

[31:0]	RO	32'b0	quay_cnt	
0x34				
[31:0]	RO	32'b0	incy_cnt	
0x38				
[31:18]	_	14'b0	reserved	
[17:16]	RW	2'b0	incz_mode	
[15:2]	_	14'b0	reserved	
[1:0]	RW	2'b0	quaz_mode	
0x3C				
[31:0]	RW	32'b0	quaz_hit	
0x40				
[31:0]	RW	32'b0	incz_hit	
0x44				
[31:0]	RO	32'b0	quaz_cnt	
0x48				
[31:0]	RO	32'b0	incz_cnt	//
0x3FC				X/1 / / / / / / / / / / / / / / / / / /
[31:0]	RW	32'b0	dummy	* K///
[15]	RO	1'b0	reserved	Reserved

Table 24: Quadrature decoder registers

3.13 Key Scan (KSCAN)

Keyscan supports key matrix with up to 16 rows by 18 columns. Each individual rows or columns can be enabled or disabled through register settings. GPIO pins can be configured to be used for key scan. A few key scan Parameters can be set through registers, including polarity (low or high indicating key pressed); support multi-key-press or only single-key-press; de-bounce time (the time duration a key press is deemed valid) from 0 to 128mS with 255us step.

A valid key press can trigger an interrupt when keyscan interrupt is enabled. After a keyscan interrupt is serviced, writing 1 to the interrupt state register bit can clear the state bit.

The keyscan has a manual mode and an auto mode. For manual mode, when a keyscan interrupt is received, it is upo the MCU/software to scan the keyscan output pins and check the input pins, to determine which keys have been pressed. Manual mode is relatively slow and need CPU to process. On the contrary, in automode keyscan will automatically scan the output/input pins, and store the row/column info corresponding to the key pressed into read only registers, then trigger an interrupt for software to retrieve key press information.

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.

129 / 148

Rev: A

Document #: 13-52-18 **T**

Title: QMS7926 Datasheet

Rev: A

3.13.1 Register table

Key scan related registers are listed below.

Base address: 4002_4000

OFFSET	TYPE	RESET	NAME	DESCRIPTION	
0xC0				Хд	
[31:24]	RW	8'h00	mkdi	key scan debounce interval, 0-255, unit: 512uS	
[23]	RW	1'b0	mk_pol	key matrix polarity, 0: active scan high, active sense high; 1: active scan low, active sense low;	
[22]	RO	1'b0	reserved	no use/as	
[21]	RW	1'b0	asact	auto scan on activity: 0, no auto scan, 1, auto scan on activity	
[20]	RW	1'b0	imkp	ignore multi key press	
[19:2]	RW	18'h0	ms	matrix scan outputs enable: 1: enable, 0: disable	
[1]	RW	1'b0	ks_ie	key scan interrupt enable	
[0]	RW	1'b0	ks_en	key scan enable	
0xC4					
[31:18]	RO	14'b0	reserved	//- /	
[17]	WC	1'b0	mkp	key pressed indicator, 0: no key press, 1: key pressed, write 1 to clear	
[16:1]	RO	16'h0FFF	mr	key scan inputs states	
[0]	WC	1'b0	mi	interrupt state, write 1 to clear interrupt, 0: no interrupt, 1: interrupt issued,	
0xC8					
[31:13]	RO	19'b0	reserved		
[12]	RO	1'b0	so	scan on: 1: auto scan is ongoing, 0: scan off	
[11:10]	RO	2'b0	mukp	multi key pressed, 00, no key press, 01: 1 key press, 10, more than 1 key pressed	
[9:5]	RO	5'h1F	rp	row of key pressed, only for 1 key pressed case	
[4:0]	RO	5'h1F	ср	column of key pressed, only for 1 key pressed case	
0xCC			•		
[31:16]	RO	16'h0	mkc1	column 1 key pressed, for multi key pressed case	
[15:0]	RO	16'h0	mkc0	column 0 key pressed, for multi key pressed case	
0xD0					
[31:16]	RO	16'h0	mkc3	column 3 key pressed, for multi key pressed case	
[15:0]	RO	16'h0	mkc2	column 2 key pressed, for multi key pressed case	
0xD4					
[31:16]	RO	16'h0	mkc5	column 5 key pressed, for multi key pressed case	
[15:0]	RO	16'h0	mkc4	column 4 key pressed, for multi key pressed case	

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.

	1	1	1	
0xD8				
[31:16]	RO	16'h0	mkc7	column 7 key pressed, for multi key pressed case
[15:0]	RO	16'h0	mkc6	column 6 key pressed, for multi key pressed case
0xDC				
[31:16]	RO	16'h0	mkc9	column 9 key pressed, for multi key pressed case
[15:0]	RO	16'h0	mkc8	column 8 key pressed, for multi key pressed case
0xE0				7//
[31:16]	RO	16'h0	mkc11	column 11 key pressed, for multi key pressed case
[15:0]	RO	16'h0	mkc10	column 10 key pressed, for multi key pressed case
0xE4				
[31:16]	RO	16'h0	mkc13	column 13 key pressed, for multi key pressed case
[15:0]	RO	16'h0	mkc12	column 12 key pressed, for multi key pressed case
0xE8				/ X_ / \
[31:16]	RO	16'h0	mkc15	column 15 key pressed, for multi key pressed case
[15:0]	RO	16'h0	mkc14	column 14 key pressed, for multi key pressed case
0xEC				
[31:16]	RO	16'h0	mkc17	column 17 key pressed, for multi key pressed case
[15:0]	RO	16'h0	mkc16	column 16 key pressed, for multi key pressed case
0xF0				_ '/K//>
[31:16]	RW	16'h0	reserved	<u> </u>
[15:0]	RW	16'h0FFF	mk_in_en	enable/disable key scan inputs: 0: disable, 1: enable
0xF4				
[31:2]	RW	30'h0	reserved	
[1:0]	RW	2'b0	ks_pena_i	
0xF8				>/
[31:0]	RW	32'h0	ks_iosel	

Table 25: Key scan related registers

3.14 Analog to Digital Converter (ADC) with Programmable Gain Amplifier (PGA)

The 12bit SAR ADC has total 10 inputs. Among them, there are two for PGA inputs, and two differential inputs for the on-chip temperature sensor. The other six inputs can be programmed to 3 pair differential inputs or six single-ended inputs. There is a manual mode with which the ADC can be configured to convert a specific input in single-ended or differential and with a specific ADC clock rate. There is also an auto sweep mode, namely all enabled input channels can be swept automatically in order by the ADC and the converted data will be stored at corresponding memory locations.

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.

Title: QMS7926 Datasheet

Rev: A

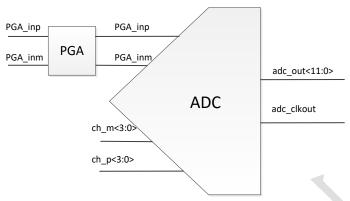


Figure 11: ADC

3.14.1 PGA Path

The PGA provides 42dB gain range from 0dB to 42dB in 3dB steps.



Figure 12: PGA path

pga_gain1 <1>	pga_gain1 <0>	Stage1 gain (dB)	pga_gain2<2 >	pga_gain2<1 >	pga_gain2<0 >	Stage2 gain(dB)
0	0	0	0	0	0	0
0	1	12	0	0	1	3
1	0	24	0	1	0	6
			0	1	1	9
			1	0	0	12
			1	0	1	15
	7		1	1	0	18

Table 26: PGA gain

Set PGA_SEenable to "1", PGA will be set to Single-ended mode by pulling the PGA into its Common-mode voltage.

The information contained herein is the exclusive property of QST, and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of QST.

Title: QMS7926 Datasheet

Rev: A

3.14.2 ADC Path

By default the ADC is configured in manual mode. In this mode, the ADC clock rate can be configured to 80k/160k/320k sample per second. Select the pair of inputs and configure it to differential or singled-ended (positive or negative). By default it is differential. After enabling, the ADC will take samples with the configured clock rate and store the data to a channel dependent memory location. For each channel a memory size of 128Byte is allocated, when it is full an interrupt bit will be flagged. Each sample of 12bits takes 2 Byte memory space.

0x4000_F07C		Regi	ister Description	
[4]	adc_ctrl_override	Set manual mode: 1: r	manual, 0: auto. Default 1	
[3]	adc_tconv_sel	For auto mode only, a 1: 2.34us	dc conversion time sel: 0: 1.56us,	
[2:1]	adc_clk_sel	For manual mode only 320k	y, clksel: 00: 80k, 01: 160k, 10:	
[0]	max_rate_256k_320k	For auto mode only, n	nax rate base: 0, 256k, 1, 320k	
0x4000_F048		Regi	ister Description	
[11]	adc12b_semode_enm		y: 12 bit ADC single-ended mode Bit<11> Bit<8> cannot both be 1; d mode	
[8]	Adc12b_semode_epm		y: 12 bit ADC single-ended mode Bit<8> Bit<11> cannot both be 1; d mode	
[7:5]	Channel configure	control bits. adc12_ctrl<3:1> 000 001 differential 010 011 100	y: 12 bit ADC input channel select Selected channel PGA inputs, differential Temperature sensing inputs, input A, positive and negative input B, positive and negative input C, positive and negative	
[3]	ADC enable	12b ADC power up co1: Power up ADC0: Power down ADC	ntrol.	
Memory start/	end addresses	-	ADC channels	
4005_0400 - 4	005_047F	PAG inputs, differential		
4005_0480 - 4	005_04FF	Temperature sensing, differential		

The information contained herein is the exclusive property of QST, and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of QST.

4005_0500 - 4005_057F		Input A, positive or differential
4005_0580 - 4005_05FF		Input A, negative
4005_0600 - 40	005_067F	Input B, positive or differential
4005_0680 - 40	005_06FF	Input B, negative
4005_0700 - 40	005_077F	Input C, positive or differential
4005_0780 - 40	005_07FF	Input C, negative
0x4005_003C	ADC interrupt status	Register Description
[7]		input C, negative
[6]		Input C, positive or differential
[5]		Input B, negative
[4]		Input B, positive or differential
[3]		Input A, negative
[2]		Input A, positive or differential
[1]		Temperature sensing, differential
[0]		PGA inputs, differential
0x4005_0038	ADC interrupt write clear	Register Description
[7]		input C, negative, write 1 to clear
[6]		Input C, positive or differential, write 1 to clear
[5]		Input B, negative, write 1 to clear
[4]		Input B, positive or differential, write 1 to clear
[3]		Input A, negative, write 1 to clear
[2]		Input A, positive or differential, write 1 to clear
[1]		Temperature sensing, differential, write 1 to clear
[0]		PGA inputs, differential, write 1 to clear

Table 27: ADC manual mode

ADC can also be configured into auto channel sweep mode by setting the "adc_ctrl_override" bit to 0, with which the enabled channels will be sampled in the configured order automatically. The ten ADC input channels can be configured by programming their corresponding registers. Their configurations include sampling time, enable/disable, differential/single-ended, and continuous sampling/single-shot, based on the following register table. The sampled data is stored in the corresponding memory locations as in manual mode.

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.

Title: QMS7926 Datasheet

Rev: A

0x4000_F06C	ADC_CTL0	Register Description
[31:16]	Temperature sensing, auto mode, differential	channel config: [3:0] sample time, for max rate 320k: 2T to 62T, step 4T; for max rate 256k, 3T to 63T, step 4T, T is period of 1.28MHz; [4] channel enable; [5] differential 1 or single-ended 0; [6] continuous 0 or one shot 1. For auto channel sweep mode only
PGA inputs, differential		channel config: [3:0] sample time, for max rate 320k: 2T to 62T, step 4T; for max rate 256k, 3T to 63T, step 4T, T is period of 1.28MHz; [4] channel enable; [5] differential 1 or single-ended 0; [6] continuous 0 or one shot 1. For auto channel sweep mode only
0x4000_F070	ADC_CTL1	Register Description
[31:16]	Inputs A, negative	channel config: [3:0] sample time, for max rate 320k: 2T to 62T, step 4T; for max rate 256k, 3T to 63T, step 4T, T is period of 1.28MHz; [4] channel enable; [5] differential 1 or single-ended 0; [6] continuous 0 or one shot 1. For auto channel sweep mode only
[15:0]	Input A, positive or differential	channel config: [3:0] sample time, for max rate 320k: 2T to 62T, step 4T; for max rate 256k, 3T to 63T, step 4T, T is period of 1.28MHz; [4] channel enable; [5] differential 1 or single-ended 0; [6] continuous 0 or one shot 1. For auto channel sweep mode only
0x4000_F074	ADC_CTL2	Register Description
[31:16] Input B, negative	channel config: [3:0] sample time, for max rate 320k: 2T to 62T, step 4T; for max rate 256k, 3T to 63T, step 4T, T is period of 1.28MHz; [4] channel enable; [5] differential 1 or single-ended 0; [6] continuous 0 or one shot 1. For auto channel sweep mode only	

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.

Rev: A

	T		
[15:0] Input B, positive or differential		channel config: [3:0] sample time, for max rate 320k: 2T to 62T, step 4T; for max rate 256k, 3T to 63T, step 4T, T is period of 1.28MHz; [4] channel enable; [5] differential 1 or single-ended 0; [6] continuous 0 or one shot 1. For auto channel sweep mode only	
0x4000_F078	ADC_CTL3	Register Description	
[31:16]	Input C, negative	channel config: [3:0] sample time, for max rate 320k: 2T to 62T, step 4T; for max rate 256k, 3T to 63T, step 4T, T is period of 1.28MHz; [4] channel enable; [5] differential 1 or single-ended 0; [6] continuous 0 or one shot 1. For auto channel sweep mode only	
[15:0]	Input C, positive or differential	channel config: [3:0] sample time, for max rate 320k: 2T to 62T, step 4T; for max rate 256k, 3T to 63T, step 4T, T is period of 1.28MHz; [4] channel enable; [5] differential 1 or single-ended 0; [6] continuous 0 or one shot 1. For auto channel sweep mode only	

Table 28: ADC channel configurations

3.14.3 ADC Channel <3:0> Connectivity

PGA inputs	hardwired
temp sensing	hardwired
aio<0>	Input A negative
aio<1>	Input A positive
aio<2>	Input B negative
aio<3>	Input B positive
aio<4>	Input C negative
aio<9>	Input C positive

Table 29: ADC channel connectivity

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.

Title: QMS7926 Datasheet

Rev: A

Aio<9, 4:0> and PGA inputs(Aio<7:8>) can be selected through an analog Mux by programming aio_pass<7:0> or aio_attn<7:0>. For example, register 0x4000_F020<8><0> set to 01, then Aio<0> is connected to ADC input A positive node.

0x4000_F020		Register Description
		attn[5:0]. analogIO control for {aio<9>, aio<4>,
		aio<3>, aio<2>, aio<1>, aio<0>}.
		{attn[x], pass[x]}:
[13:8]	Attenuation ctrl	00 switch off
		01 pass
		10 attenuate to 1/4
		11 NC
		pass[5:0]. analogIO control for {aio<9>, aio<4>,
		aio<3>, aio<2>, aio<1>, aio<0>}.
		{attn[x], pass[x]}:
		00 switch off
		01 pass
		10 attenuate to 1/4
	_	11 NC
		note: analog IO sharing
[5:0]	pass ctrl	gpio<11>/aio<0>
[5.0]	pass ctri	gpio<12>/aio<1>
		gpio<13>/aio<2>
		gpio<14>/aio<3>
		gpio<15>/aio<4>
		gpio<16>/aio<5>/32K XTAL input
		gpio<17>/aio<6>/32K XTAL output
		gpio<18>/aio<7>/pga in+
		gpio<19>/aio<8>/pga in-
		gpio<20>/aio<9>/mic bias

Table 30: analog Mux

4 Absolute Maximum Ratings

Maximum ratings are the extreme limits to which QMS7926 can be exposed without permanently damaging it. Exposure to absolute maximum ratings for prolonged periods of time may affect the reliability of the QMS7926. **Table 32** specifies the absolute maximum ratings for QMS7926.

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.

Document #: 13-52-18 **Title:** QMS79

Title: QMS7926 Datasheet Rev: A

Symbol	Parameter	Min.	Max.	Unit
Supply voltages	•			
VDD3		-0.3	+3.6	V
DEC			1.32	V
VSS			0	V
I/O pin voltage				
VIO		-0.3	VDD + 0.3	V
Environmental				
Storage temperature		-40	+125	°C
MSL	Moisture Sensitivity Level		2	3/
ESD HBM	Human Body Model Class 2		2	kV
ESD CDMQF	Charged Device Model	4/7	500	V
Flash memory				
Endurance		5///	100 000	write/erase cycles
Retention		A //X	10 years at 40 °C	
Number of times an address can be written between erase cycles	7		2	times

Table 31: Absolute maximum ratings

5 Operating Conditions

The operating conditions are the physical Parameters that QMS7926 can operate within as defined in

Table 33.

Symbol	Parameter	Min.	Тур.	Max.	Units
VDD3	Supply voltage, normal mode	1.8	3	3.6	V
tr_VDD	Supply rise time (0 V to 1.8 V)			100	ms
TA	Operating temperature	-40	27	125	°C

Table 32: Operating conditions

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.	138 / 148
--	-----------

6 Radio Transceiver

6.1 Radio Current Consumption

Parameter	Description	MIN	TYP	MAX	UNIT
Tx only at 0dBm	with internal DC-DC @3V		8		mA
Rx Only	with internal DC-DC @3V		8		mA

Table 33: Radio current consumption

6.2 Transmitter Specification

Parameter	Description	MIN	TYP	MAX	UNIT
RF Max Output	X		10	7	dBm
Power			10		abiii
RF Min Output			-20		dBm
Power			-20		abiii
OBW for BLE	20dB occupy-bandwidth for BLE modulation 1Mbps		1100		KHz
1Mbps	2008 Occupy-ballowidth for BLE filodulation 11/10/ps		1100		KΠZ
OBW for BLE	20dB accurate handwidth for BLE modulation 2Mbns		2300		KHz
2Mbps	20dB occupy-bandwidth for BLE modulation 2Mbps		2300		КПZ
OBW for GFSK	20dB occupy-bandwidth for GFSK modulation		1100		KHz
500Kbps	2Mbps		1100		KΠZ
OBW for GFSK	20dB occupy-bandwidth for GFSK modulation		1100		KHz
125bps	2Mbps		1100		KΠZ
Error Vector	Officet FVM for OODCK modulation		0.02		
Measure	Offset EVM for OQPSK modulation		0.02		
FDEV for BLE	Fraguency deviation for CECK modulation 1NAhns	160		250	VII-
1Mbps	Frequency deviation for GFSK modulation 1Mbps	160		250	KHz
FDEV for BLE	Fraguency deviation for CESV modulation 284has	220		F00	I/II-
2Mbps	Frequency deviation for GFSK modulation 2Mbps	320		500	KHz

Table 34: Transmitter specification

6.3 Receiver Specification

6.3.1 RX BLE 1Mbps GFSK

Parameter	Description	MIN	TYP	MAX	UNIT
Dy Concitivity	Sensitivity test 1Mbps BLE ideal transmitter, 37		-97		dBm
Rx Sensitivity	Byte BER=1E-3		-97		иын

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.	139 / 148
--	-----------

co-channel	modulated interferer in channel, 37 Byte		_	I/C
rejection	BER=1E-3		-6	dB
Selectivity +-	Wanted signal at -67dBm, modulated interferer		7	I/C
1MHz	at +/- 1MHz, 37 Byte BER=1E-3		,	dB
Selectivity +-	Wanted signal at -67dBm, modulated interferer		45	I/C
2MHz	at +/- 2MHz, 37 Byte BER=1E-3		45	dB
Selectivity +-	Wanted signal at -67dBm, modulated interferer		50	I/C
3MHz	at +/- 3MHz, 37 Byte BER=1E-3		30	dB
Selectivity +-	Wanted signal at -67dBm, modulated interferer		ΕO	I/C
4MHz	at +/- 4MHz, 37 Byte BER=1E-3		50	dB
Selectivity +-	Wanted signal at -67dBm, modulated interferer	0	55	I/C
5MHz or More	at >=+/- 5MHz, 37 Byte BER=1E-3		55	dB
Selectivity Imag	Wanted signal at -67dBm, modulated interferer		22	I/C
frequency	at imagefrequency, 37 Byte BER=1E-3		22	dB
	Wanted signal at 2402MHz, -64dBm, Two			
Intermodulation	interferers at 2405 and 2408 MHz respectively,		-20	dBm
	at the given power level, 37 Byte BER=1E-3			
Carrier Frequency	\\\(\lambda_1 \rangle \rangle \)		+-	KHz
Offset Tolerance			350	КПZ
Sample Clock	4 1 ///		+-	nnm
Offset Tolerance			120	ppm

Table 35: RX BLE 1Mbps GFSK

6.3.2 RX BLE 2Mbps GFSK

Parameter	Description	MIN	TYP	MAX	UNIT
Rx Sensitivity	Sensitivity test 2Mbps BLE ideal transmitter, 37 Byte BER=1E-3		-94		dBm
co-channel	modulated interferer in channel, 37 Byte		6		I/C
rejection	BER=1E-3		-6		dB
Selectivity +-	Wanted signal at -67dBm, modulated interferer		-5		I/C
1MHz	at +/- 1MHz, 37 Byte BER=1E-3		-5		dB
Selectivity +-	Wanted signal at -67dBm, modulated interferer		9		I/C
2MHz	at +/- 2MHz, 37 Byte BER=1E-3		9		dB
Selectivity +-	Wanted signal at -67dBm, modulated interferer		30		I/C
3MHz	at +/- 3MHz, 37 Byte BER=1E-3		30		dB
Selectivity +-	Wanted signal at -67dBm, modulated interferer		40		I/C
4MHz	at +/- 4MHz, 37 Byte BER=1E-3		40		dB
Selectivity +-	Wanted signal at -67dBm, modulated interferer		55		I/C
5MHz or More	at >=+/- 5MHz, 37 Byte BER=1E-3		33		dB

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.	140 / 148
--	-----------

Selectivity Imag	Wanted signal at -67dBm, modulated interferer		22	I/C
frequency	at imagefrequency, 37 Byte BER=1E-3		22	dB
	Wanted signal at 2402MHz, -64dBm, Two			
Intermodulation	interferers at 2405 and 2408 MHz respectively,		-20	dBm
	at the given power level, 37 Byte BER=1E-3			
Carrier Frequency			+-	KHz
Offset Tolerance		,	350	КПZ
Sample Clock			+-	nnm
Offset Tolerance	4		120	ppm

Table 36: RX BLE 2Mbps GFSK

6.3.3 RX 500Kbps GFSK

Parameter	Description	MIN	TYP	MAX	UNIT
Rx Sensitivity	Sensitivity test 500Kbps BLE ideal transmitter, 37 Byte BER=1E-3		-98		dBm
co-channel rejection	modulated interferer in channel, 37 Byte BER=1E-3		-4		I/C dB
Selectivity +- 1MHz	Wanted signal at -67dBm, modulated interferer at +/- 1MHz, 37 Byte BER=1E-3		10		I/C dB
Selectivity +- 2MHz	Wanted signal at -67dBm, modulated interferer at +/- 2MHz, 37 Byte BER=1E-3		45		I/C dB
Selectivity +- 3MHz	Wanted signal at -67dBm, modulated interferer at +/- 3MHz, 37 Byte BER=1E-3		50		I/C dB
Selectivity +- 4MHz	Wanted signal at -67dBm, modulated interferer at +/- 4MHz, 37 Byte BER=1E-3		50		I/C dB
Selectivity +- 5MHz or More	Wanted signal at -67dBm, modulated interferer at >=+/- 5MHz, 37 Byte BER=1E-3		55		I/C dB
Selectivity Imag frequency	Wanted signal at -67dBm, modulated interferer at imagefrequency, 37 Byte BER=1E-3		24		I/C dB
Intermodulati on	Wanted signal at 2402MHz, -64dBm, Two interferers at 2405 and 2408 MHz respectively, at the given power level, 37 Byte Ber=1E-3		-19		dBm
Carrier Frequency Offset Tolerance			+- 350		KHz

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.	141 / 148
reproduced, or discressed in whole of in part without prior written perimission of QS1.	

Titla.	QMS7926 Datasheet
ı me:	QIVID 1720 Datablect

Rev:	A
	7 B

Sample Clock			
Offset		120	ppm
Tolerance		120	

Table 37: RX 500Kbps GFSK

6.3.4 RX 125Kbps GFSK

Parameter	Description	MIN	TYP	MAX	UNIT
Rx Sensitivity	Sensitivity test 125Kbps BLE ideal transmitter, 37 Byte BER=1E-3		-103	\ \	dBm
co-channel	modulated interferer in channel, 37 Byte		-1		I/C dB
rejection	BER=1E-3		•		I/C UD
Selectivity +-	Wanted signal at -67dBm, modulated interferer		-11		I/C dB
1MHz	at +/- 1MHz, 37 Byte BER=1E-3		11		1/ C UD
Selectivity +-	Wanted signal at -67dBm, modulated interferer		45	V	I/C dB
2MHz	at +/- 2MHz, 37 Byte BER=1E-3		43		1/ C UD
Selectivity +-	Wanted signal at -67dBm, modulated interferer		50		I/C dB
3MHz	at +/- 3MHz, 37 Byte BER=1E-3		30		1/ C UB
Selectivity +-	Wanted signal at -67dBm, modulated interferer		50		I/C dB
4MHz	at +/- 4MHz, 37 Byte BER=1E-3		30		I/C UB
Selectivity +-	Wanted signal at -67dBm, modulated interferer		55		I/C dB
5MHz or More	at >=+/- 5MHz, 37 Byte BER=1E-3		33		1/C UB
Selectivity Imag	Wanted signal at -67dBm, modulated interferer		28		I/C dB
frequency	at imagefrequency, 37 Byte BER=1E-3		20		1/C UB
	Wanted signal at 2402MHz, -64dBm, Two				
Intermodulation	interferers at 2405 and 2408 MHz respectively,		-18		dBm
	at the given power level, 37 Byte BER=1E-3				
Carrier					
Frequency			+-		KHz
Offset			350		КΠΖ
Tolerance					
Sample Clock			+-		
Offset			120		ppm
Tolerance			120		

Table 38: RX 125Kbps GFSK

6.4 RSSI Specifications

Parameter	Description	MIN	ТҮР	MA X	UNI T
RSSI Dynamic Range			70		dB

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.	142 / 148
--	-----------

Title: QMS7926 Datasheet

Rev: A

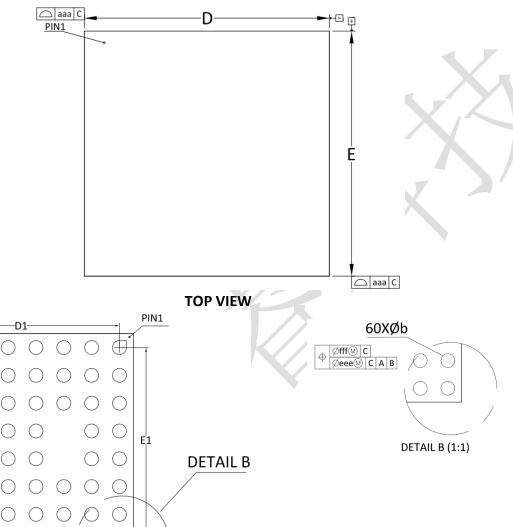
RSSI Accuracy	RSSI Accuracy Valid in range -100 to -30dBm	+/-2	dB
RSSI Resolution	Totally 7bit, from 0 to 127	1	dB
RSSI Period		8	us

Table 39: RSSI specifications

7 Glossary

Term	Description
AHB	Advanced High-performance Bus (ARM bus standard)
AHB-AP	DAP AHB Port for debug component access thru AHB bus
AMBA	Advanced Microcontroller Bus Architecture
AON	Always-on power domain
APB	Advanced Peripheral Bus (ARM bus standard)
APB-AP	DAP APB Port for debug component access thru APB bus
BROM	Boot ROM
DAP	Debug Access Port (ARM bus standard)
ETM	Embedded trace module
FPU	Floating Point Unit
I2C	Inter-Integrated Circuit
I2S	Inter-IC Sound, Integrated Interchip Sound
ITM	Instrumentation Trace Macrocell Unit
JTAG	Joint Test Access Group (IEEE standard)
JTAG-AP	DAP's JTAG Access Port to access debug components
JTAG-DP	DAP's JTAG Debug Port used by external debugger
J&M	Jun and Marty LLC
MPU	Memory Protection Unit
NVIC	Nested vector Interrupt Controller
PCR	Power Clock Reset controller
POR	Power on reset, it is active low in this document
RFIF	APB peripheral to interface RF block
SWD	Serial Wire DAP (ARM bus standard)
SoC	System on chip
SPI	Serial Peripheral Interface
SRAM	Static Random Access memory
TWI	Two-Wire Interface
UART	Universal Asynchronous Receiver and Transmitter
WDT	Watchdog Timer

Table 40: Glossary


The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.	143 / 148
--	-----------

Title: QMS7926 Datasheet

Rev: A

Package dimensions

BOTTOM VIEW

SIDE VIEW

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.

Title: QMS7926 Datasheet

Rev: A

Size specification

ALL DIMENSIONS ARE IN MILLIMETERS.					
SYMBOL	MILLIMETER				
	MIN	NOR	MAX		
Α	1.09	1.20	1.31		
A1	0.14	0.17	0.20		
A2	0.80	0.85	0.90		
А3	0.15	0.18	0.21		
D	3.90	4.00	4.10		
D1	3.5 BASIC				
E	3.90	4.00	4.10		
E1	3.5 BASIC				
e	0.50 BASIC				
b		0.25 TYP			
aaa	0.10				
bbb	0.10				
ссс	0.10				
ddd	0.08				
eee	0.15				
fff	0.05				

Ordering information

Ordering Number	Temperature Range	Package	Packaging
QMS7926B	-40°C to 85°C	BGA-60	Tray: 2940 pieces

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.

Title: QMS7926 Datasheet

Rev: A

Sample Application and Layout Guide

1.1 Sample Application

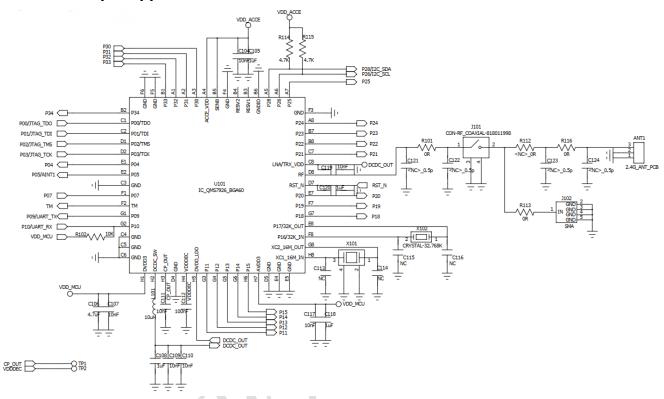


Figure 10: Sample application

1.2 Layout Guide

1.2.1 Placement

- 1. RF matching/Loop filter leading to antenna should be isolated from any other AC/DC signal as much as possible;
- 2. XTAL/OSC clock is a noise source to other circuits, keep clock trace as short as possible and away from any important area;
- 3. LDO's are sensitive and could be easily contaminated, care should be taken for the environment;
- 4. Antenna is the main RF radiation point, other important blocks should be shielded or away from this area.

RF traces

1. Define RF line width with given dielectric thickness (thickness of PCB dielectric layer to ground plain) to achieve 50ohm impedance; this is mainly for the RF line connecting to matching/loop filter and antenna.

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.

2. Differential traces should be kept in the same length and component should be placed symmetrically;

3. Certain length of RF trace should be treated as part of RF matching.

1.2.2 Bypass Capacitor

- 1. Each VDD pin needs a bypass capacitor to release chip internal noise and block noise from power supply.
- 2. For power traces, bypass capacitors should be placed as close as possible to VDD pins.
- 3. Use one large and one small capacitor when the pin needs two capacitors. Typically the capacitance of the larger capacitor is about 100 times of that of the smaller one. The smaller capacitor usually has better quality factor than the larger one. Place the larger capacitor closer to the pin.
- 4. The capacitors of Loop filter need to have larger clearance to prevent EMC/EMI issue.
- 5. Ground via should be close to the Capacitor GND side, and away from strong signals.

1.2.3 Layer Definition

- 1. Normally 4 layer PCB is recommended.
- 2. RF trace must be on the surface layer, i.e. top layer or bottom.
- 3. The second layer of RF PCB must be "Ground" layer, for both signal ground and RF reference ground, DO NOT put any other trace or plane on second layer, otherwise "antenna effect" will complicate debug process.
- 4. Power plane generally is on the 3rd layer.
- 5. Bottom layer is for "signal" layer.
- 6. If two layer PCB is used, quality will degrade in general. More care needs to be taken. Try to maximize ground plane, avoid crossing of signal trace with other noise lines or VDD, shield critical signal line with ground plane, maximize bypass capacitor and number of ground vias.

1.2.4 Reference clock and trace

- 1. Oscillator signal trace is recommended to be on the 1st layer;
- 2. DO NOT have any trace around or across the reference clock (oscillator) trace.
- 3. Isolate the reference clock trace and oscillator by having more GND via around.
- 4. DO NOT have any other traces under the Oscillator.

1.2.5 Power line or plane

- 1. Whether to use power plain or power line depend on the required current, noise and layout condition. For RF chip, we generally suggest to use power line to bring power into IC pin. Line has parasitic inductance, which forms a low pass filter to reduce the noise traveling around PCB.
- 2. Add more conductive via on the current source, it will increase max current limit and reduce inductance of via.

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.

Title: QMS7926 Datasheet 13-52-18 Rev: A **Document #:**

3. Add some capacitor alone the power trace when power line travels a long distance.

4. DO NOT place power line or any plane under RF trace or oscillator and its clock trace, the strong clock or RF signal would travel with power line.

1.2.6 **Ground Via**

- 1. Ground Via must be as close to the ground pad of bypass capacitor as possible, too much distance between via and ground pad will reduce the effect of bypass capacitor.
- 2. Having as many ground via as possible.
- 3. Place ground via around RF trace, the RF trace should be shielded with via trail.

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.